
Higgs analysis with quantum classifiers

Vasilis Belis1,∗, Samuel González-Castillo2, Christina Reissel1, Sofia Vallecorsa3, Elías F.
Combarro4, Günther Dissertori1, and Florentin Reiter5

1Institute of Particle Physics and Astrophysics, ETH Zürich, Zürich, Switzerland
2Faculty of Sciences, University of Oviedo, Oviedo, Spain
3CERN, 1, Esplanade des Particules, Geneva, CH 1211
4Department of Computer Science, University of Oviedo, Oviedo, Spain
5Institute for Quantum Electronics, ETH Zürich, Zürich, Switzerland

Abstract. We have developed two quantum classifier models for the tt̄H(bb̄)
classification problem, both of which fall into the category of hybrid quantum-
classical algorithms for Noisy Intermediate Scale Quantum devices (NISQ).
Our results, along with other studies, serve as a proof of concept that Quantum
Machine Learning (QML) methods can have similar or better performance, in
specific cases of low number of training samples, with respect to conventional
machine learning (ML) methods even with a limited number of qubits avail-
able in current hardware. To utilise algorithms with a low number of qubits —
to accommodate for limitations in both simulation hardware and real quantum
hardware — we investigated different feature reduction methods. Their impact
on the performance of both the classical and quantum models was assessed.
We addressed different implementations of two QML models, representative
of the two main approaches to supervised quantum machine learning today: a
Quantum Support Vector Machine (QSVM), a kernel-based method, and a Vari-
ational Quantum Circuit (VQC), a variational approach.

1 Introduction

Identifying the Higgs boson production in association with top quark - antiquark pairs in
which the Higgs decays into a pair of bottom quark-antiquark allows studying the Yukawa
coupling of the Higgs boson in a purely fermionic process. Precise measurements of the tt̄H
production processes with the LHC experiments at CERN are crucial tests of our fundamental
understanding of the universe and serve as probes for potential undiscovered physics, as the
Higgs boson - top quark Yukawa coupling directly carries information about the scale of new
physics [1].

The considered signal and background processes, in red and green respectively, are de-
picted in Fig. 1. Distinguishing signal over background is extremely challenging since in
both cases the final state is the same. The complex final state of the tt̄H(bb̄) process comes
with a large number of jets, but allows studying the purely fermionic Higgs production and
decay. The semi-leptonic channel is addressed in order to suppress the QCD background.
Moreover, using the decay of the Higgs boson into a pair of bottom quarks balances the very
low production cross section leading to larger number of events to be observed.
∗e-mail: vasileios.belis@cern.ch

ar
X

iv
:2

10
4.

07
69

2v
1

 [
qu

an
t-

ph
]

 1
5

A
pr

 2
02

1

b

q'

q

b

b
b

e+, µ+

v
e
, v

µ

g

g
t

t

+

W–

H

W

g

Figure 1. Example of Leading Order (LO) Feynman
diagram of the signal process in red and the dominant
background process in green. The Higgs Boson is
produced in association with tt̄ via gluon fusion and it
decays to bb̄. The channel is semi-leptonic as only
one of the W bosons decays into leptons.

Classification of tt̄H(bb̄) versus the dominant tt̄bb̄ background is typically addressed with
Multivariate Analysis techniques (MVA). Current physics analyses are using analytic meth-
ods like the Matrix-Element Method [2], as well as Boosted Decision Trees (BDTs) and
Neural Networks (NN) to tackle the discrimination of signal and the overwhelming back-
ground [3, 4].

We developed two quantum classifier models for the tt̄H classification problem, both of
which fall into the category of hybrid quantum-classical algorithms for Noisy Intermediate
Scale Quantum devices (NISQ): a Quantum Support Vector Machine (QSVM), a kernel-
based method, and a Variational Quantum Circuit (VQC), a variational approach. In order to
reduce the problem dimensionality and ease the classical input feature encoding in quantum
states, we extract a compressed representation using a latent space. The performance of the
classical methods, mentioned above, is also measured on this reduced data representation.

This paper is organised as follows: the data set and the pre-processing step are described
in section 2; a description of the two quantum algorithms follows in section 3; section 4 con-
tains an analysis of the results including a detailed comparison to the classical benchmarks.
Finally section 5 summarizes our findings and our future plans.

2 The data set and pre-processing step

The Monte Carlo (MC) data samples used in the study are generated using Powheg v.2 [5–7]
for hard scattering, Pythia 8 [8] for parton shower simulations and Delphes v.3.4.1 [9] for
the detector response simulation. Delphes is configured with the CMS detector topology and
Run II settings.

2.1 Pre-selection cuts

In the pre-selection step, we require the electrons and muons to pass selection criteria of the
transverse momentum pT , pseudorapidity η and isolation with respect to jets. Namely, the
object selection cuts are: pT > 30 GeV, |η| < 2.1 and iso > 0.1 for the electrons, pT > 26
GeV, |η| < 2.1 and iso > 0.1 for the muons and pT > 30 GeV, |η| < 2.4 for the jets. After
this initial object selection, we further consider events with at least one lepton and at least
4 jets from which at least two are b-tagged. Thus, the following event selection criteria are
used: njet ≥ 4, nb-tag ≥ 2 and nleptons = 1. From the leading-order description of the process
depicted in Fig. 1 we identify that the nominal expectation consists of 4 b-tagged jets and 2
jets of any flavour, hence 6 jets in total. For our analysis, we keep the 7 most energetic jets of
each event, allowing one extra jet to take into account initial or final state radiation.

2.2 Auto-Encoders for feature reduction

Feature selection, i.e. choosing a set of physical observables to be used as an input for the
classifier model, is of particular importance in every HEP analysis. Features are chosen
according to their discriminative power, meaning that they enable the classifier to best dis-
criminate the signal against the background events. Realistic quantum methods that can be
used in Noisy Intermediate-Size Quantum (NISQ) devices are restricted to a relatively low
dimensional feature space which also limits the information given to the classifiers. Most
studies proposing QML methods in HEP involve selecting only a subset of available observ-
ables [10, 11] or deploy a feature reduction method, such as Principle Component Analysis
(PCA) [12].

We implemented two Auto-Encoder neural networks [13] for the tt̄H(bb̄) analysis to re-
duce the dimension of the feature space from 67 — representing the kinematics of jets, lep-
tons and missing transverse momentum — to 16 and 8 dimensions in the latent space, respec-
tively. The Auto-Encoder inherently takes into account non-linear correlations between the
observables; thus, in principle, higher order correlations between the features are not lost like
in the case of PCA. Due to this property, we expect that as much information as possible is
maintained from the original features.

For the Auto-Encoder training and testing, the MC dataset is split into training (80%),
validation (10%) and test (10%) data sets, with sizes N train = 1.15 × 106 and Nvalidation =

N test = 1.44×105. The hyper-parameters of the two Auto-Encoder models, one implemented
using PyTorch and the other using TensorFlow, are presented in Table 1. After each training
epoch, the loss is computed on the validation set. The chosen model is the one that has the
lowest Mean Squared Error (MSE) on the validation data set. The final layer and the latent
layer, i.e. the layer representing the latent space, of both Auto-Encoders uses a Sigmoid
activation function. Thus guaranteeing that the latent space features and the output of the
decoder are bounded between 0 and 1.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Jet 2 Energy (normalized)

0

5

10

15

20

25

De
ns

ity

Background
Rec. Background
Signal
Rec. Signal

(a) PyTorch Auto-Encoder

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Lepton pz (normalised)

0

5

10

15

20

De
ns

ity

Background
Signal
Rc. Background
Rc. Signal

(b) TensorFlow Auto-Encoder

Figure 2: Histogram representing the original and reconstructed (Rec./Rc.) data for one
example variable using the two Auto-Encoders.

The MSE obtained on the test sample with the PyTorch Auto-Encoder is 6.4×10−4, while
that of the TensorFlow Auto-Encoder is 5.07 × 10−3. Figure 2 shows histograms comparing

PyTorch AE TensorFlow AE
Layer Type Dense
Encoder hidden layers 6 7
Latent space dim. 16 8
Loss Mean Square Error (MSE)
Optimizer Adam
Learning Rate 2 × 10−3

√
3 × 10−3

Batch size 128 93
Number of epochs 80 30

Table 1: Autoencoder (AE)
hyperparameters. The de-
coder part of the network
is symmetric with respect
to the encoder in terms of
layers and node numbers.
The hyperparameter tuning
is done by semi-grid search.

an example distribution, from the original data, and the corresponding results, obtained after
reconstruction (encoding and decoding) with the two Auto-Encoders.

The latent space features serve as the input of the quantum circuits used in the classifier
models, the QSVM and the VQC, and are embedded, or equivalently encoded, via different
feature maps. We use SVM and other classical models for benchmarking the quantum models
with respect to ROC curves, and the corresponding AUC, measured on the test data sets.

We employed a Deep NN and BDTs to assess the performance of realistic HEP ap-
proaches to the tt̄H(bb̄) classification task. The full set of available simulated Monte Carlo
samples1 was split for the training (80%) and testing (20%) of the models. The achieved per-
formance is presented in Fig. 3. Apart from the training using all the input features (67) the
models were also trained utilising only reduced set of features (16) of the latent space of one
of the developed Autoencoders (see Sec. 2.2). The latter serves as one of the performance
benchmarks developed in this study to investigate the performance of our quantum models,
discussed in detail in Sec. 4. It should be highlighted that the training and test samples
used with these models are far larger than the ones used in the quantum models that we have
developed.

0.0 0.2 0.4 0.6 0.8 1.0
Background Efficiency (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 E

ffi
cie

nc
y

(T
PR

)

N(train): 1827808, N(test) 456952

DNN, AUC = 0.704 ± 0.001
DNN(latent), AUC = 0.623 ± 0.002
BDT, AUC = 0.691 ± 0.001
BDT(latent), AUC = 0.652 ± 0.002

Figure 3. The computed ROCs for the BDT and
DNN using the test data set. The test data set
was split into 5 subsets and for each one the
AUC was computed. The mean and uncertainty
of the AUCs is depicted in the legend. The
models were trained both using the full set of of
input features (67) and the reduced set of
features (16), constructed from the latent space
of one of the two developed Autoencoders (see
Sec. 2.2).

1For more details about the data set and pre-processing see the corresponding Sec. 2.

3 Quantum Classifier Models

In this section, we introduce the two quantum classifier models that we have used: quan-
tum Support Vector Machines and Variational Quantum Circuits. Both systems encode the
classical input as states in a Hilbert space — the quantum feature space — the dimension of
which increases exponentially with the number of qubits. This is done, in both cases, using
feature maps [14]: quantum circuits that depend on the input data. While this encoding is
conceptually equivalent in both approaches, the two models differ in the way the quantum
state is handled, once the data has been encoded.

3.1 Quantum Support Vector Machine

The QSVM is the quantum counterpart of a kernel-based SVM classifier [15], with the funda-
mental difference that the feature map and, hence, the corresponding kernel, is implemented
via a quantum circuit [16]. The goal is to design the quantum circuit in such a way that, firstly,
it transforms the input data in a manner that is exponentially hard to simulate classically; and,
secondly, the quantum feature map allows the background and signal events to be more easily
distinguishable in the feature space than in the input one.

The loss function of a SVM depends on the inner product of the feature vectors. Specifi-
cally, the Lagrangian dual form of the SVM is:

maximize L(c1 . . . cn) =

n∑
i=1

ci −
1
2

n∑
i=1

n∑
j=1

yici(~xi · ~x j)y jc j, (1)

subject to
n∑

i=1

ciyi = 0, and 0 ≤ ci ≤
1

2nλ
≡ C for all i. (2)

where ci are the independent variables of the loss, ~xi and ~x j are feature vectors of a given
pair of data points, i and j and yi, y j their corresponding labels (e.g. yi = 1 for a signal
event i and y j = −1 for a background event j). In this formulation of the SVM loss, the
dependence on the inner product between pairs of data points is apparent. Using the kernel
trick substitution [17] (~xi · ~x j) → k(~xi, ~x j) ≡ φ(~xi) · φ(~x j), where φ(•) is a feature map, we
can directly replace the SVM Kernel with a quantum one that is implemented via a quantum
circuit as depicted in Fig. 4. C, or equivalently λ, is the regularization parameter that tunes
the trade-off between mis-classification and width of the SVM margin. Tuning this parameter
makes the model robust against over-fitting.

Figure 4: Quantum Circuit for the QSVM, where ~xi and ~x j are feature vectors of a given pair
of data points, i and j. The circuit constructs the kernel matrix elements, Ki j, by sampling the
probability of measuring |0〉 B |0〉⊗ nqubits

, making the kernel (inner product) quantum.

In the QSVM model, the kernel matrix is computed using a quantum computer and the
minimization of the SVM loss function is performed on a classical computer. As feature

maps, we considered two data embedding circuits. Namely, an amplitude encoding circuit,
as described in [18], for a 4-qubit and 6-qubit architecture, and the circuit depicted in Fig. 5
for an 8-qubit architecture. An important aspect of amplitude encoding is its ability to ex-
ponentially reduce the required number of qubits: with N qubits, it is able to encode 2N

features. Thus, the 4-qubit circuit can encode 24 = 16 features in the amplitudes of a generic
state |ψ〉 ∈ H⊗4, where H is the Hilbert space of a single qubit. Similarly the 6-qubit im-
plementation of amplitude encoding is able to embed 64 features to the quantum circuit. In
contrast, the designed circuit Fig. 5 requires 8 qubits but results in a much shallower architec-
ture. This aspect would make the later circuit more suitable of an implementation on a NISQ
device.

Figure 5: Data encoding circuit serving as feature map for the 8-qubit QSVM implementa-
tion. The circuit includes generic unitary 1-qubit gates that depend on the elements (16) of
the data features vector ~x, and 2-qubit Control-X (CNOT) gates accomplishing entanglement.

3.2 Variational Quantum Circuit

As initially pointed out in [19], a VQC can be viewed as a quantum Neural Network. In a
VQC, once the feature map has encoded the classical data, the quantum state goes through a
circuit with layers of gates that depend on trainable parameters ~θ and act in a serial manner,
mimicking the forward pass of a Neural Network.

Figure 6: Quantum Circuit for the VQC. Uenc encodes the data vector ~x into the quantum
circuit, then ` layers of parametrized circuits G and entanglement circuits Uent are used. The
trainable parameters are ~θ = (~θ1, . . . , ~θ`). O~x,~θ is the observable whose expectation value we
sample with the quantum device.

The circuit that includes all the operations that depend on the trainable parameters — and
not on the input data — is called the variational form, and it contains a sequence of layers.
Each layer i is defined by a sub-circuit Gi(~θi) that depends on its own trainable parameters
~θi and an entanglement sub-circuit Uenc. After the variational form, the measurement of a
fixed observable O is performed: its expectation value is the output of the VQC and is used
to classify the input. This is portrayed and summarised in Fig. 6.

As in the QSVM case, the optimisation of the trainable parameters is classical and con-
sists in the mimimisation of a loss function. Nevertheless, purely quantum optimization ap-
proaches have been proposed [20] and applied to HEP examples [10].

Data re-uploading, a novel technique for the development of quantum classifiers, was
introduced in [21]. Under this approach, instead of using a single instance of the feature map
and the variational form, the quantum classification circuit is made up of several repetitions
of the traditional VQC scheme — each with its own classical inputs in the feature map and
trainable parameters. This allows for a reduction in the number of used qubits, but leads to
deeper circuits.

We have implemented our VQC in a 4-qubit circuit. The variational form that we have
used performs Y-rotations on each of the qubits by a value specified through a trainable
parameter (this would be the Gi(~θi)) alternating with a linear cascade of Controlled-NOT
operations (the Uenc) depicted in Fig. 7. The feature map uses two repetitions of a scheme
that combines Pauli gates to encode the data and C-NOT gates to create entanglement. This
scheme is represented in Fig. 8.

Figure 7: Variational form used in the VQC implementation, dependent on the parameters ~θ.

Figure 8: Scheme for the feature map used in the VQC implementation, dependent on data
feature vectors ~x.

We have designed the VQC to use 8 input variables. In order to accommodate all of
them in this 4-qubit setup, we have resorted to the data re-uploading technique: using the
feature map to load the first four variables followed by an instance of the variational form,
and, immediately thereafter, using the same scheme to load the next four variables with an
independent set of trainable parameters in the variational form.

Lastly, we measure the first qubit on the computational basis (z). Any state with higher
probability of |0〉 in the first qubit is labelled as background and any state with higher proba-

bility of |1〉, as signal. The chosen loss, is the binary cross-entropy. Since all our experiments
were run on an ideal simulator, we have direct access to the real probabilities; in an experi-
mental setup, however, these would have to be computed empirically by running the circuit
for a sufficiently large number of shots.

4 Results

We used a different training dataset for each of the two methods, but all the tests were carried
out on a common collection of five datasets, each with 720 samples. In addition to the two
quantum models, whose results are presented in the next two subsections, we also trained
some simple classical ML models (SVMs, Logistic Regression, Decision Trees, Random
Forests, Multilayer Perceptrons, AdaBoost, kNN, Naive Bayes and QDA) and evaluated them
on those same test sets. The training sets used for the classical models were the ones used
for the quantum methods, using both the full set of features and a reduced set, 16 or 8 as in
the quantum case. In order to have a fair comparison and highlight the effect of the feature
extraction step, we have surveyed different techniques to reduce the number of features: we
used the ones obtained by the two AEs, of course, then the 16 and 8 most informative ones
according to their AUC values, and, finally, we applied some common feature extraction
techniques: PCA, KMeans, Truncated SVD, Isomap and Locally Linear Embedding. We
also performed grid search to optimize the hyperparameters. Due to a lack of space, we will
only show here the results obtained by the best models.

4.1 Quantum Support Vector Machine

All developed QSVM models were trained on 576 samples and the regularisation parameter
λ (see Eq. 2) was chosen to be 0.2 by means of a grid search. The 4-qubit and 8-qubit
implementations utilised the 16 latent space features of the PyTorch AE, as described in
Sec. 2.2, while a 6-qubit QSVM with amplitude encoding was also developed. The latter is
trained on a subset of 64 features out of the original 67; in this case, the 3 individually least
informative features (AUC ∼ 0.5) were discarded.

In Fig. 9, we present the performance of the QSVM models with respect to the ROC and
AUC values. The ROC is computed using the concatenated test set (5×720 samples) while the
mean AUC and its uncertainty are computed across the 5 test data sets. The best performing
classical models are also depicted for comparison. In 9a, the models are trained using the 16
AE latent space features. Both the 4 and 8-qubit models present a similar performance to a
classical SVM with a radial base function (rbf) kernel. In 9b, the performance of the models
trained on 64 of the original 67 features is depicted. Similarly, the 6-qubit QSVM with
amplitude encoding shows the same performances as an SVM with a linear kernel. Lastly,
9c includes the models trained utilising 16 out of the 67 input features. The selection of the
16 features is based on their individual AUC values, which is interpreted as their individual
discrimination power for the classification task.

Summarising, the 4-qubit and 8-qubit architectures of the QSVM model behave similarly.
In principle, for a NISQ device implementation, one could use the best-suited architecture of
the two for the quantum hardware. We observed that the 6-qubits encoding leads to the best
performance out of all the QSVM models we developed; this was to be expected, since this
architecture uses most of the input information. The 16-best features selected according their
individual AUC yield better results than the feature reduction made with the Auto-Encoder,
using the 4-qubit QSVM model.

0.0 0.2 0.4 0.6 0.8 1.0
Background Efficiency (FPR)

0.0

0.2

0.4

0.6

0.8

1.0
Si

gn
al

 E
ffi

cie
nc

y
(T

PR
)

Ntrain=576, Ntest=720 (x5)

QSVM (4 qubits): AUC = 0.621 ± 0.031
SVM rbf: AUC = 0.619 ± 0.024
QSVM (8 qubits): AUC = 0.620 ± 0.032
Random Classifier

(a) Models trained on the AE latent space features
(16).

0.0 0.2 0.4 0.6 0.8 1.0
Background Efficiency (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 E

ffi
cie

nc
y

(T
PR

)

Ntrain=576, Ntest=720 (x5)

QSVM (6 qubits): AUC = 0.676 ± 0.017
SVM linear: AUC = 0.672 ± 0.017
Random Classifier

(b) Models trained on the original input features
(67), discarding the 3 least informative ones (64).

0.0 0.2 0.4 0.6 0.8 1.0
Background Efficiency (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 E

ffi
cie

nc
y

(T
PR

)

Ntrain=576, Ntest=720 (x5)

QSVM (4 qubits): AUC = 0.657 ± 0.014
SVM rbf: AUC = 0.651 ± 0.010
Random Classifier

(c) Models trained on 16 selected features of the input space according to their individual AUC values.

Figure 9: ROC plots for the QSVM models and the corresponding best performing classical
models.

4.2 Variational Quantum Classifier

In the (classical) optimisation of the variational form parameters, we used the Adam optimiser
on 3000 samples for 70 epochs with a learning rate of 5 × 10−3 and a batch size of 50. Our
initial test uses the eight features of the TensorFlow AE (described in section 2.2) and encodes
them in 4 qubits following the data re-uploading procedure. The resulting AUC was 0.566 ±
0.025, a relatively low value confirming what, already, the analysis of the QSVM performance
had suggested: the dimensionality reduction and feature extraction step is not optimal and
degrades the quality of the information fed to the VQC. This hypothesis is, indeed, verified
by training the same VQC circuit using as input the 8 variables with the highest discrimination
power, as determined by their AUC, among the original 67. The corresponding ROC curve

Feature selection + Model AUC
AUC + QSVM 0.66 ± 0.01

PyTorch AE + QSVM 0.62 ± 0.03
AUC + SVM rbf 0.65 ± 0.01

PyTorch AE + SVM rbf 0.62 ± 0.02
KMeans + SVM rbf 0.61 ± 0.02

(a) 16 input variables

Feature selection + Model AUC
AUC + QSVM 0.68 ± 0.02

AUC + Linear SVM 0.67 ± 0.02
Logistic Regression 0.68 ± 0.02

(b) 64 (QSVM, LSVM) and 67 (LR) input variables

Table 2: Comparison of the AUC value for the QSVM and the best classical models with
different feature reduction methods trained on 576 samples and with an identical or similar
number of input variables. SVM rbf stands for “SVM with a radial base function kernel”.

is shown in Fig. 10 and compared to the best classical model we trained on the same input
(a Random Forest). The corresponding VQC AUC is 0.662 ± 0.015 and represents our best
result among the VQC tests we have run. It should be noted, however, that these results
are preliminary and the VQC architecture together with the training process need further
optimization, which is currently on-going.

0.0 0.2 0.4 0.6 0.8 1.0
Background Efficiency (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 E

ffi
cie

nc
y

(T
PR

)

Ntrain=3000, Ntest=720 (x5)

VQC: AUC = 0.6625 ± 0.0149
RF: AUC = 0.6622 ± 0.0153
Random Classifier

Figure 10: ROC plot for the VQC and the
classical models trained on the 8 variables
with more discrimination power (as deter-
mined by the AUC).

Feature selection + Model AUC
AUC + VQC 0.66 ± 0.01

AUC + Random Forest 0.66 ± 0.02
KMeans + Log. Regr. 0.64 ± 0.01

TensorFlow AE + AdaBoost 0.63 ± 0.03

Table 3: Comparison of the AUC value of the
best VQC with the best classical models using
different feature reduction methods with eight
input variables trained on 3000 samples.

5 Conclusions

We have presented results of an initial investigation aimed at understanding strengths and
flaws of a quantum approach to the classification of a complex final state of the tt̄H(bb̄)
process. We explored different quantum algorithms, in terms of classifier architectures
(QSVM and VQC), data encoding structures (amplitude encoding, direct encoding and data
re-uploading), and data dimensionality reduction strategies. A detailed comparison to sev-
eral classical approaches, including SVMs, BDTs and Random Forests, shows that, despite

the limited number of qubits constrained by capabilities of the NISQ hardware, the quantum
classifiers achieve results that are similar, if not slightly better, than classical models trained
on the same datasets, in agreement with previous studies [10–12, 22].

At the same time, our findings clearly point to the importance of the initial feature ex-
traction step: this is a critical process in classical analysis and it seems to be the same in the
(current) quantum configuration. In particular, our current AE-based strategy needs further
improvement in order to achieve a better low-dimensionality description of the information
contained in the original data set.

In future studies, we will systematically investigate the feature maps and variational forms
of the quantum models to maximise performance. Moreover, we expect to simultaneously
optimise the developed algorithms for implementations on NISQ devices and assess the effect
of hardware noise on model performance.

Note added. At the time of submission we became aware of a related work on quantum
support vector machines for Higgs analysis [23].

References
[1] F. Bezrukov, M. Shaposhnikov, Journal of Experimental and Theoretical Physics 120,

335–343 (2015)
[2] P. Artoisenet, P. de Aquino, F. Maltoni, O. Mattelaer, Physical Review Letters 111

(2013)
[3] Tech. Rep. CMS-PAS-HIG-18-030, CERN, Geneva (2019), https://cds.cern.ch/
record/2675023

[4] Tech. Rep. ATLAS-CONF-2020-058, CERN, Geneva (2020), https://cds.cern.
ch/record/2743685

[5] P. Nason, Journal of High Energy Physics 2004, 040 (2004)
[6] S. Frixione, P. Nason, C. Oleari, Journal of High Energy Physics 2007, 070 (2007)
[7] S. Alioli, P. Nason, C. Oleari, E. Re, Journal of High Energy Physics 2010 (2010)
[8] T. Sjöstrand, S. Mrenna, P. Skands, Computer Physics Communications 178, 852 (2008)
[9] J. De Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaitre, A. Mertens, M.S. ,

The DELPHES 3 Collaboration, et al, Journal of High Energy Physics 2014, 57 (2014)
[10] A. Blance, M. Spannowsky, arXiv preprint arXiv:2010.07335 (2020)
[11] K. Terashi, M. Kaneda, T. Kishimoto, M. Saito, R. Sawada, J. Tanaka, Computing and

Software for Big Science 5, 1 (2021)
[12] S.L. Wu, J. Chan, W. Guan, S. Sun, A. Wang, C. Zhou, M. Livny, F. Carminati,

A. Di Meglio, A.C. Li et al., arXiv preprint arXiv:2012.11560 (2020)
[13] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016), http://

www.deeplearningbook.org

[14] M. Schuld, N. Killoran, Phys. Rev. Lett. 122, 040504 (2019)
[15] B.E. Boser, I.M. Guyon, V.N. Vapnik, Proceedings of the fifth annual workshop on

Computational learning theory (1992)
[16] V. Havlíček, A. Córcoles, K. Temme, et al, Nature 567, 209 (2019)
[17] K. Koutroumbas, S. Theodoridis, Pattern Recognition (Elsevier Science, 2008), ISBN

9780080949123, https://books.google.es/books?id=QgD-3Tcj8DkC
[18] M. Schuld, A. Bocharov, K.M. Svore, N. Wiebe, Phys. Rev. A 101, 032308 (2020)
[19] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, S. Woerner (2020), 2011.00027
[20] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, N. Killoran, Phys. Rev. A 99, 032331

(2019)

https://cds.cern.ch/record/2675023
https://cds.cern.ch/record/2675023
https://cds.cern.ch/record/2743685
https://cds.cern.ch/record/2743685
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://books.google.es/books?id=QgD-3Tcj8DkC

[21] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, J.I. Latorre, Quantum 4, 226 (2020)
[22] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Nature 550, 375 (2017)
[23] S.L. Wu, S. Sun, W. Guan, C. Zhou, J. Chan, C.L. Cheng, T. Pham, Y. Qian, A.Z.

Wang, R. Zhang et al., Application of quantum machine learning using the quantum
kernel algorithm on high energy physics analysis at the lhc (2021), 2104.05059

	1 Introduction
	2 The data set and pre-processing step
	2.1 Pre-selection cuts
	2.2 Auto-Encoders for feature reduction

	3 Quantum Classifier Models
	3.1 Quantum Support Vector Machine
	3.2 Variational Quantum Circuit

	4 Results
	4.1 Quantum Support Vector Machine
	4.2 Variational Quantum Classifier

	5 Conclusions

