
Particle Track Reconstruction with Quantum Algorithms

Cenk Tüysüz1,2,∗, Federico Carminati3, Bilge Demirköz1, Daniel Dobos4,6, Fabio Fracas3,
Kristiane Novotny4, Karolos Potamianos4,5, Sofia Vallecorsa3, and Jean-Roch Vlimant7

1Middle East Technical University, Ankara, Turkey
2STB Research, Ankara, Turkey
3CERN, Geneva, Switzerland
4gluoNNet, Geneva, Switzerland
5DESY, Hamburg, Germany
6Lancaster University, Lancaster, UK
7California Institute of Technology, Pasadena, California, USA

Abstract. Accurate determination of particle track reconstruction parame-
ters will be a major challenge for the High Luminosity Large Hadron Collider
(HL-LHC) experiments. The expected increase in the number of simultaneous
collisions at the HL-LHC and the resulting high detector occupancy will make
track reconstruction algorithms extremely demanding in terms of time and com-
puting resources. The increase in number of hits will increase the complexity
of track reconstruction algorithms. In addition, the ambiguity in assigning hits
to particle tracks will be increased due to the finite resolution of the detector
and the physical “closeness” of the hits. Thus, the reconstruction of charged
particle tracks will be a major challenge to the correct interpretation of the HL-
LHC data. Most methods currently in use are based on Kalman filters which are
shown to be robust and to provide good physics performance. However, they
are expected to scale worse than quadratically. Designing an algorithm capa-
ble of reducing the combinatorial background at the hit level, would provide a
much “cleaner” initial seed to the Kalman filter, strongly reducing the total pro-
cessing time. One of the salient features of Quantum Computers is the ability
to evaluate a very large number of states simultaneously, making them an ideal
instrument for searches in a large parameter space. In fact, different R&D ini-
tiatives are exploring how Quantum Tracking Algorithms could leverage such
capabilities. In this paper, we present our work on the implementation of a
quantum-based track finding algorithm aimed at reducing combinatorial back-
ground during the initial seeding stage. We use the publicly available dataset
designed for the kaggle TrackML challenge.

1 Introduction

Latest developments in Quantum Computing, significantly reduced the time needed to resolve
certain problems"[1]. This resulted in a search for new methods to boost current algorithms
whose computational complexity depend on the size of the dataset worse than polynomial.

The upcoming upgrade of Large Hadron Collider (LHC) at CERN to High Luminosity
(HL-LHC) will increase the number of collisions. The HL-LHC upgrade will bring many
∗e-mail: cenk.tuysuz@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 09013 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024509013

challenges. Particle track reconstruction is one of the challenges [2]. Current algorithms have
trouble scaling up to higher collision rates. Therefore, researchers are trying new methods to
tackle the problem such as the use of Graph Neural Networks[3] and Quantum Computing[4–
6].

When a particle passes through a tracking detector layer, a signal called a "hit" is gener-
ated. The dataset contains precise locations of these hits and their particle identifications as
labels. The challenge is to associate hits that are belonging to the same initial particle/track.

The HepTrkX team proposed a Graph Neural Network implementation for particle track
reconstruction that uses the kaggle TrackML challenge dataset[3, 7]. The simulated dataset
and the challenge was created by CERN scientists to invite machine learning experts to come
up with novel methods to track reconstruction. Even though the Kaggle competition is con-
cluded, the dataset is still being actively used by many researchers in the field of track recon-
struction to benchmark their results.

The speed-up provided by Quantum Algorithms may play an important role in the fu-
ture of track reconstruction in particle physics experiments. In this work, we present an ex-
ploratory look at the HepTrkX[8] project from a Quantum Computing perspective to evaluate
the capabilities of Quantum Computing along with Deep Learning algorithms [3].

2 The Dataset and Classical Approach
The TrackML dataset consists of simulated measurements of many detector layers. The de-
tector layers are arranged using a model layout that is common to most LHC experiments.
In this layout there are several detectors that span a cylindrical geometry. All the detectors
are rotated such that their center sees the collision center. In this geometry, particle beams
collide on the z axis around z = 0 which is the center of collisions and also the center of the
detector. The layout of the detectors can be seen in Figure 1.

Figure 1. TrackML Detector Layout [7].

The complex layout of detectors allow better precision. However, they also increase the
computational complexity as the particles might pass through both horizontal (barrel) and
vertical (endcap) layers of detectors. For simplicity, the model only uses the barrel region of
the detector. Therefore, the dataset contains only the layers in regions 8, 13 and 17.

2

EPJ Web of Conferences 245, 09013 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024509013

The work presented in this paper uses the same preprocessing steps as those made by
the HepTrkX team. This step is used to create an initial graph and labels from the TrackML
dataset which contain particle momentum and spatial coordinates of detector measurements
which are called "hits" and particle identification numbers.

The initial graph is created by connecting all logically possible combinations of hits and
then applying loose selection criteria in order to decrease connectivity of the initial graph.
This selection prevent connections between far detectors and acute angles which are physi-
cally not possible. The cuts used are given in Table 1.

Table 1. Cuts applied to TrackML dataset for preprocessing.

|pT | > 1GeV
∆φ < 0.0006
z0 < 100mm
η [−5, 5]

The coordinate definitions are as follows. φ is the angle along the transverse plane (xy
plane) and |pT | is the magnitude of momentum along the same plane. η is the psuedorapidity
which is a parameter widely used in particle physics as a measure of the azimuthal angle with
respect to the beam axis.

The graphs created using the TrackML dataset are further divided into 8 in φ direction and
into 2 in z direction to reduce the size of the graphs for a single event. A single event contains
∼ 8k hits requiring tremendous amounts of memory. By dividing a graph in its symmetry
axes to 16, the same operations can be applied with less memory. This becomes handy when
using limited memory systems to train the model.

As a first step, 100 events from the TrackML dataset are used to create 1600 subgraphs
using the selection defined in Table 1. The reprocessed dataset is created using 1.0% of the
TrackML dataset. The size of the dataset is kept intentionally small to reduce simulation
times in order to speed up prototyping. Figure 2 shows an initial subgraph after preprocess-
ing. Histograms showing the distribution of hits from the preprocessed data in cylindrical
coordinates are given in Figure 3.

0.4 0.2 0.0 0.2 0.4

 (a)

0

200

400

600

800

1000

r [
m

m
]

0 250 500 750 1000
z [mm]

 (b)

0

200

400

600

800

1000

r [
m

m
]

0 250 500 750 1000
x [mm]

 (c)

400

200

0

200

y
[m

m
]

Figure 2. 1 of 16 subgraphs created from a single event. (a,b) are subgraphs in cylindrical coordinates
and (c) is a subgraph in Cartesian coordinates. Red represents Ground Truth, while Blue shows Fake
edges created using loose cuts.

The HepTrkX team proposed a GNN (Graph Neural Network) to perform segment clas-
sification. The model consists of 3 types of networks. The first one is an Input Network
which takes a graph and maps it to higher dimensions. The second one is an Edge Network

3

EPJ Web of Conferences 245, 09013 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024509013

0.0 0.2 0.4 0.6 0.8 1.0
r [m]

0.0
2.5
5.0
7.5

Hi
t C

ou
nt

s [
#]

1e4

0.4 0.2 0.0 0.2 0.4 1.0 0.5 0.0 0.5 1.0
z [m]

Figure 3. Histogram of hits crated using 1600 subgraphs in cylindrical coordinates. The distribution of
r and z can be explained by referring to the geometry of the detector in Figure 1. The distribution in φ
is uniform as expected since the geometry is symmetric along the transverse plane.

which takes node information from all edges in a graph and computes the edge information.
The last network is a Node Network which computes hidden node features by looking at
neighbouring nodes of each node. Edge and Node Networks are applied recursively after the
execution of the Input Network. The model which is tested using the same TrackML dataset
showed excellent performance. The model scores are 99.5% purity, 98.7% efficiency, and
overall accuracy of 99.5% with 0.5 threshold [3]. Readers can refer to [9] for definitions of
metrics.

3 Quantum Circuits as Neural Networks

The increase in computational power in the last two decades allowed scientists to deploy
efficient machine learning models. Neural Networks use the immense power of classical
computing to represent hidden features in data using millions of artificial neurons. However,
even with today’s computational power some tasks still take a considerable amount of time
as the complexity of the tasks increases.

Quantum computing allows using entanglement, enabling the introduction of correlations
that are not classically available to the neural network models. Additionally, the models can
be extended to higher dimensions much faster as the dimension of the Hilbert Space is 2n,
with n being the number of qubits.

Quantum circuits have been previously shown to perform binary classification. Many
Quantum circuit models in literature were considered [10, 11]. In this work, hierarchical
quantum circuits have been selected to replace Neural Network layers, due to their high
accuracy and robustness against noise [10].

The constructed models are implemented using Tensorflow [9] and Pennylane [12]. Pen-
nylane is an automatic differentiation tool for quantum circuits and is used to calculate the
gradients [12]. Readers can also refer to [13] for a more theoretical view.

4 Quantum Computing Integration

Transforming a well-performing Graph Neural Network to a Quantum Computing structure
requires many modifications. To go step by step, this work only replaces the Edge Network
of HepTrkX and does not use the Input and Node Network for simplicity. Therefore, the
network only takes spatial information of nodes and computes the probability of an edge
being true or fake. The original HepTrkX GNN model and the model in this work can be
seen in Figure 4.

The Tree Tensor Network (TTN) is chosen among the hierarchical quantum classifiers as
the quantum circuit to replace the neural network layer. The first attempt is made with no

4

EPJ Web of Conferences 245, 09013 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024509013

QuantumEdgeNet

InputNet EdgeNet NodeNet EdgeNet NodeNet EdgeNet

Figure 4. The HepTrkX GNN structure and the QuantumEdgeNet model used in this work.

hidden dimensions to test the capabilities of the structure. In later work, hidden dimensions
will be included.

The Quantum Edge Network is applied to all edges one by one. All edges contain 2 node
information which consists of 3 spatial coordinates each summing up to 6 data points for
every edge. The coordinate information is encoded in 6 qubits, mapping each one to 0 −
2π. This encoding method is chosen for its simplicity as other methods introduce additional
computational complexities to use less qubits negating the gain in the number of qubits [14].
The data points are used as inputs to Ry rotation gates to encode the information as the angle
between |0〉 and |1〉 states.

Ry(θ) |0〉 = cos(θ/2) |0〉 + sin(θ/2) |1〉 (1)

After encoding the input in qubits, the TTN circuit is applied. The TTN circuit contains
Ry and CNOT gates. Ry gates starts with random parameters to be tuned later and Ry gates
rotate the state according to the parameter’s value. The CNOT gate is used to introduce
correlation between qubits so that their values are not independent. At the end of the circuit,
there is a measurement. The input encoding layer and TTN circuit structure plotted using
Qiskit [15] and matplotlib [16] can be seen in Figure 5.

Ry
(0.447)

Ry
(3.0657)

Ry
(1.9484)

Ry
(0.20081)

Ry
(3.0145)

Ry
(0.88119)

Ry
(4.3799)

Ry
(3.8027)

Ry
(5.6672)

Ry
(2.8989)

Ry
(5.4648)

Ry
(6.0933)

Ry
(0.22455)

Ry
(0.089279)

Ry
(2.4017)

Ry
(0.92561)

Ry
(0.98927)

0

q00

q01

q02

q03

q04

q05

c0

Figure 5. 6 Qubit Tree Tensor Network (TTN) representation of the Quantum Edge Network.

The quantum circuit is required to be run multiple times as the result of a single measure-
ment is either 0 or 1. Therefore, the circuit is run 1000 times and the average of the outputs is
used to determine the probability of an edge being true or fake. The number of circuit runs,
in general called shots, should be selected carefully and the best value depends on a trade off

between error rate and run time.

5

EPJ Web of Conferences 245, 09013 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024509013

The network is trained over 2 epochs. The subgraphs are divided randomly into training
and test sets with a 9:1 ratio. The model is trained using stochastic gradient descent and
weighted binary cross entropy [9]. Training performance of the model can be seen in Figure 6.

Figure 6. Training Loss (on the left) and Validation Accuracy (on the right) of the TTN in 2 full epochs.
(1 epoch = 1440 updates)

The results in Figure 6 show that the model can learn features of the graph data. The
accuracy achieved is considerably small, but this is mainly due to over simplification of the
model. The network showcased here is a proof of principle prototype of a complete Quantum
Graph Neural Network structure.

5 Future Work

The work presented here is the first step towards a Quantum Graph Neural Network that can
classify tracks with high precision and accuracy. The final structure will include;

• The Node Network as another quantum circuits to learn features among neighbouring
nodes.

• Recursive iterations of Node and Edge Networks to pass the information through nodes

• An input layer to include hidden layers, which do learn in a large Hilbert Space.

The up-to-date model and all source codes can be accessed through [17].

6 Conclusion

In this work, we show that it is possible to implement Quantum Graph Neural Network based
approaches for the track reconstruction problem. Although, the current model is not com-
plete, it shows promising preliminary results towards a quantum circuit based algorithm that
can be run using a universal quantum computer. This work only uses simulations and does
not consider practical applicability at the moment.

7 Acknowledgments

Part of this work was conducted at "iBanks", the AI GPU cluster at Caltech. We acknowl-
edge NVIDIA, SuperMicro and the Kavli Foundation for their support of "iBanks". This
work was partially supported by Turkish Atomic Energy Authority (TAEK) (Grant No:
2017TAEKCERN-A5.H6.F2.15). Cenk Tüysüz thanks Oral Okan and Egemen Sert from
STB for their valuable discussions.

6

EPJ Web of Conferences 245, 09013 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024509013

References

[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S. Boixo,
F.G.S.L. Brandao, D.A. Buell et al., Nature 574 (2019), arXiv:1910.11333

[2] G. Apollinari, O. Bruening, T. Nakamoto, L. Rossi, High luminosity large hadron col-
lider hl-lhc (2017), arXiv:1705.08830

[3] S. Farrell, P. Calafiura, M. Mudigonda, Prabhat, D. Anderson, J.R. Vlimant, S. Zheng,
J. Bendavid, M. Spiropulu, G. Cerati et al. (2018), arXiv:1810.06111

[4] I. Shapoval, P. Calafiura (2019), arXiv:1902.00498
[5] F. Bapst, W. Bhimji, P. Calafiura, H. Gray, W. Lavrijsen, L. Linder (2019),
arXiv:1902.08324

[6] A. Zlokapa, A. Anand, J.R. Vlimant, J.M. Duarte, J. Job, D. Lidar, M. Spiropulu (2019),
arXiv:1908.04475

[7] S. Amrouche, L. Basara, P. Calafiura, V. Estrade, S. Farrell, D.R. Ferreira, L. Finnie,
N. Finnie, C. Germain, V.V. Gligorov et al. (2019), arXiv:1904.06778

[8] https://heptrkx.github.io/
[9] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado,

A. Davis, J. Dean, M. Devin et al., TensorFlow: Large-scale machine learning on
heterogeneous systems (2015), software available from tensorflow.org, https://www.
tensorflow.org/

[10] E. Grant, M. Benedetti, S. Cao, A. Hallam, J. Lockhart, V. Stojevic, A.G. Green, S. Sev-
erini, npj Quantum Information 4, 17 (2018)

[11] A.S. Bhatia, M.K. Saggi, A. Kumar, S. Jain, Neural Computation 31, 1499 (2019),
arXiv:1905.01426v1

[12] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, C. Blank, K. McKiernan, N. Killoran,
pp. 1–12 (2018), arXiv:1811.04968

[13] E. Farhi, H. Neven (2018), arXiv:1802.06002
[14] S. Aaronson, Nat. Phys. 11, 291 (2015)
[15] H. Abraham, I.Y. Akhalwaya, G. Aleksandrowicz, T. Alexander, G. Alexandrowics,

E. Arbel, A. Asfaw, C. Azaustre, AzizNgoueya, P. Barkoutsos et al., Qiskit: An open-
source framework for quantum computing (2019)

[16] J.D. Hunter, Computing in Science & Engineering 9, 90 (2007)
[17] https://github.com/cnktysz/HepTrkX-quantum/

7

EPJ Web of Conferences 245, 09013 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024509013

https://heptrkx.github.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/cnktysz/HepTrkX-quantum/

	Introduction
	The Dataset and Classical Approach
	Quantum Circuits as Neural Networks
	Quantum Computing Integration
	Future Work
	Conclusion
	Acknowledgments

