
CERN-TH-2021-139, TIF-UNIMI-2021-14

Style-based quantum generative adversarial networks for Monte Carlo events

Carlos Bravo-Prieto,1, 2 Julien Baglio,3 Marco Cè,3 Anthony Francis,4, 3

Dorota M. Grabowska,3 and Stefano Carrazza5, 3, 1

1Quantum Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
2Departament de F́ısica Quàntica i Astrof́ısica and Institut de Ciències

del Cosmos (ICCUB), Universitat de Barcelona, Barcelona, Spain.
3Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland.

4Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
5TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano and INFN Sezione di Milano, Milan, Italy.

We propose and assess an alternative quantum generator architecture in the context of generative
adversarial learning for Monte Carlo event generation, used to simulate particle physics processes at
the Large Hadron Collider (LHC). We validate this methodology by implementing the quantum net-
work on artificial data generated from known underlying distributions. The network is then applied
to Monte Carlo-generated datasets of specific LHC scattering processes. The new quantum gen-
erator architecture leads to an improvement in state-of-the-art implementations while maintaining
shallow-depth networks. Moreover, the quantum generator successfully learns the underlying distri-
bution functions even if trained with small training sample sets; this is particularly interesting for
data augmentation applications. We deploy this novel methodology on two different quantum hard-
ware architectures, trapped-ion and superconducting technologies, to test its hardware-independent
viability.

I. INTRODUCTION

Quantum computing is a new paradigm whereby quan-
tum phenomena are harnessed to perform computations.
The current availability of noisy intermediate-scale quan-
tum (NISQ) computers [1], and recent advances towards
quantum computational supremacy [2, 3], have led to a
growing interest in these devices to perform computa-
tional tasks faster than classical machines. Among many
of the near-term applications [4, 5], the field of Quantum
Machine Learning (QML) [6, 7] is held as one promising
approach to make use of NISQ computers.

Early work in QML was mostly focused on speeding up
linear algebra subroutines [8–11], widely used in classical
machine learning, by leveraging the Harrow-Hassidim-
Lloyd algorithm [12]. This approach is promising, though
its utility depends on the existence of large-scale quan-
tum computers with low gate errors and enough qubits to
perform quantum error correction. More recent proposals
focus on defining a quantum neural network (QNN), or
parameterized quantum circuit [13–16], which then can
be trained to implement a function class [17–19]; these
proposals can be implemented on current NISQ-era de-
vices. For example, several QNNs have been proposed
for pattern classification [20–23] or data compression [24–
27]. This QML approach to quantum computing is a re-
search topic that can be adapted, improved, and tested
on many research problems in disparate scientific fields.
Motivated by this idea, we propose to investigate the
possibility of using QNNs for generative modeling [28–
30]. More specifically, we explore the uses of QNNs for
the generation of Monte Carlo events through quantum
generative adversarial networks (qGANs) [31, 32].

The generative adversarial framework employs two
competing networks, the generator and the discrimina-
tor, that are trained alternatively [33]. The generator

produces candidates while the discriminator evaluates
them. The objective of the discriminator is to distinguish
the real samples from the generated ones. That is, the
discriminator plays the role of the generator’s adversary,
and therefore, their competition is a zero-sum two-player
game. By substituting either the discriminator, the gen-
erator, or both with quantum systems, we translate the
scheme to quantum computing.

In recent months, the spreading interest in QML has
led to different qGAN implementations [34–40]. Our
contribution here can be summarized in three distinct
aspects. (1) Previous proposals employed toy data for
their qGAN training. In contrast, we test our model
using data for a quantum scattering process. In partic-
ular, we first train and validate our qGAN model with
artificial data from known underlying probability density
functions. Then, in order to test our model in a realis-
tic set-up, we use as training sets simulated Monte Carlo
events for particle physics processes at the Large Hadron
Collider (LHC) at CERN. (2) We propose an alternative
quantum generator architecture. Traditionally, the prior
noise distribution, or latent dimension in the language of
generative models, is provided to the quantum generator
through its first quantum gates. We instead embed it
on every layer of the network. This allows us to achieve
improved state-of-the-art results with shallow QNNs. In
particular, with a binning density that is at least an or-
der of magnitude higher, we achieve significantly smaller
Kullback-Leibler (KL) divergences, even when working
with a realistic dataset. Note that a similar concept was
introduced in the classical context [41], coined as style-
based generative adversarial network (GAN), which was
proven to be useful in facial recognition tasks. Given
this analogy with the classical literature, from now on
we refer to our qGAN model as style-qGAN. (3) We val-
idate and assess our style-qGAN in quantum hardware.

ar
X

iv
:2

11
0.

06
93

3v
1 

 [
qu

an
t-

ph
] 

 1
3 

O
ct

 2
02

1



2

Specifically, we successfully implement our model in two
different quantum architectures, namely ion traps and
superconducting qubits.

It is important to highlight that several research groups
from the high-energy physics (HEP) community are in-
vestigating potential applications of quantum technolo-
gies in HEP applications and obtaining interesting re-
sults [42–47]. Therefore, the study presented in this
manuscript should be considered as proof-of-concept,
providing a robust and reproducible starting point for
future investigations. In particular, the introduction of
GAN models in HEP Monte Carlo simulation has been
discussed extensively in the last years, see Refs. [48–54].
In this work, we consider the possibility to use a qGAN
model in a data augmentation context, where the model
is trained with a small amount of input samples and it
learns how to sample the underlying distribution.

The paper is structured as follows. In Sec. II we define
our style-qGAN model. In Sec. III we validate the style-
qGAN model using toy data. Then, in Sec. IV we train
the style-qGAN generator on simulated LHC events. Fi-
nally, in Sec. V we test our final model on real quantum
hardware, and in Sec. VI we present our conclusion and
future development directions. In addition, we include in
Appendix A a noise simulation of the algorithm using the
simplified noise model provided by IBM Q for the target
machine used in Sec. V.

II. IMPLEMENTATION

A. Workflow design

The classical implementation of a GAN model [33]
involves at least three components: the discriminator
model, the generator model, and the adversarial training
procedure. In this work we consider a hybrid quantum-
classical system, where the generator model has a quan-
tum representation through a QNN while the discrimi-
nator is a classical neural network model. This choice
is motivated by the practical positive implications of a
hardware-based generative model, in particular the pos-
sibility to obtain performance improvements in a real
quantum device. The idea of using a quantum device for
the generation of samples is very attractive because the
complicated aspects of density modeling and sampling
are delegated to a hardware architecture.

There are alternative approaches where both models
could be represented by a QNN [31, 37–40]. However,
after testing some prototype architectures, we have ob-
served faster convergence when using a classical discrim-
inator.

In Figure 1 we schematically show the steps involved
in the style-qGAN presented here. The procedure starts
from the preparation of reference samples from a known
distribution function that we would like to encode in the
quantum generator model. At the same time, we define
a QNN model where we inject stochastic noise in the

Quantum
Generator

Classical
Discriminator

Generated
samples

Loss

Reference
samples

Input 
distribution

Real Fake

Classical optimization

Latent 
variables

Quantum neural network model

FIG. 1. Schematic steps involved in the style-qGAN training.

latent space variables; these are used to define all the
quantum gates of the network. The generator model is
then used to extract fake generated samples that, after
the training procedure, should match the quality of the
known input distribution. Lastly, both sets of samples
are used to train the discriminator model. The quality of
the training is measured by an appropriate loss function
which is monitored and optimized classically by a min-
imization algorithm based on the adversarial approach.
The training process consists of simultaneous stochastic
gradient descent for both models which, after reaching
convergence, delivers a quantum generator model with
realistic sampling.

In the following paragraphs, we first introduce the opti-
mization procedure and the quantum generator network,
and validate the procedure by using reference samples
from known distribution functions to train the model on
a quantum simulator. We then train our style-qGAN
model with Monte Carlo-generated LHC events using
again a quantum simulator. Finally, the best-trained
model is deployed on real quantum hardware devices
based on superconducting and trapped-ion technologies.

All calculations involving quantum circuit simulation
are performed using Qibo v0.1.6 [55, 56] on classical hard-
ware. For this particular project, we have used the
tensorflow [57] backend which provides the possibil-
ity to use gradient descent optimizers during the train-
ing step. The style-qGAN model is publicly available
through the Qibo framework and the code repository
in [58].



3

B. Optimization procedure

As previously discussed, our style-qGAN comprises of
a QNN for the generator G(φg) and a classical network
for the discriminator D(φd). The quantum generator
transforms samples from a prior standard Gaussian noise
distribution z ∼ pprior(z), also called latent variables,
into samples generated by G(φg), thus mapping pprior(z)
to a different distribution pfake of generated data. On the
other hand, the discriminator takes as input samples x
and tries to distinguish between fake data from the gen-
erator and real data from the reference input distribution
preal. The training corresponds to an adversarial game,
where we alternate between improving the discriminator
to distinguish fake and real data, and the generator to
cheat the discriminator with new fake data.

In this work, we consider the binary cross-entropy for
the optimization objective. The generator’s loss function
can be defined as

LG(φg, φd) = −Ez∼pprior(z)[logD(φd, G(φg, z))] , (1)

while the discriminator’s loss function can be defined as

LD(φg, φd) = Ex∼preal(x)[logD(φd, x)]

+Ez∼pprior(z)[log(1−D(φd, G(φg, z)))] .
(2)

Notice that the adversarial training corresponds to a min-
imax two-player game,

min
φg

LG(φg, φd) , (3)

max
φd

LD(φg, φd) , (4)

where the optimum uniquely corresponds to the Nash
equilibrium between the loss functions.

The optimization of the parameters φg and φd is done
alternatively by updating the quantum generator and
classical discriminator. The optimizer used to update
the steps in this work is the ADADELTA [59], which is
a stochastic gradient descent method that monotonically
decreases its learning rate. The starting learning rates
utilized are 0.1 for the classical discriminator and 0.5 for
the quantum generator.

C. Quantum generator architecture

The quantum generator is implemented by a QNN with
trainable parameters. In particular, we employ the archi-
tecture shown in Figure 2. We consider a layered QNN,
where each layer is composed of a set of entangling gates
Uent preceded by two alternating Ry and Rz single-qubit
rotations. After implementing the layered network, a fi-
nal layer of Ry gates is applied. Note that Uent is specific

to each example and Rj(θk) = e−iθkσj/2. The number
of layers can be modified to tune the capacity of the

|0〉 Ry Rz Ry Rz

Uent

. . . Ry

|0〉 Ry Rz Ry Rz . . . Ry

...
...

...
...

...

|0〉 Ry Rz Ry Rz . . . Ry

1 layer

1
FIG. 2. Quantum neural network employed for the qGAN
model. As indicated by the dashed box, each layer is com-
posed of a set of entangling gates Uent, to be specified for each
example, preceded by two alternating Ry and Rz single-qubit
rotations. After implementing the layered network, a final
layer of Ry gates is applied.

quantum generator. However, in the following we im-
prove upon state-of-the-art results with shallow QNNs
that contain one and two layers.

Let us emphasize here the novelty of the quantum gen-
erator architecture used for the style-qGAN model, where
the action of each qubit rotation is parameterized by the
set of trainable parameters φg and, most importantly, the
latent vector ξ. Specifically, we encode them by using a
linear function as

R(i,j)
y,z (φg, ξ) = Ry,z

(
φ(i)g ξ(j) + φ(i+1)

g

)
, (5)

where i, j indicates the component of the vector. The
length of the latent vector ξ will depend on the choice
of latent dimension Dlatent for each implementation. No-
tice that our quantum generator embeds the input latent
variables into all the quantum gates of the network, in
contrast to previous qGAN proposals. This permits the
new architecture to process and decide in which parts of
the QNN the latent variables should play a relevant role.

Recall that the quantum generator’s task is creating
fake samples to fool the classical discriminator. The fake
samples are prepared by acting with the parameterized
QNN on the initial n-qubit state |0〉⊗n, and then measur-
ing in the computational basis. For our implementations,
each qubit delivers one sample component. That is, the
sample x ∈ Rn is generated as

x =
[
−
〈
σ1
z

〉
,−
〈
σ2
z

〉
, . . . ,−〈σnz 〉

]
, (6)

with 〈
σiz
〉

=
〈
Ψ(φg, ξ)

∣∣σiz ∣∣Ψ(φg, ξ)
〉
, (7)

where Ψ(φg, ξ) is the output state from the quantum gen-
erator. Notice, however, that for other models, more
sophisticated ways of generating fake samples could be
more convenient to implement. For instance, one could
generate a sample component by computing expectation
values involving several qubits. Finally, let us briefly
comment that we used a deep convolutional neural net-
work for the discriminator. More details about the clas-
sical discriminator implementation can be found in the
code [58].



4

0 2500 5000 7500 10000 12500 15000 17500 20000
Epoch

0.692

0.693

0.694

0.695
Lo

ss
Loss function

Generator
Discriminator

FIG. 3. Example of loss function convergence. After an ini-
tial warm-up phase, the loss function of both models con-
verges. This indicates that the style-qGAN has been success-
fully trained.

III. VALIDATION EXAMPLES

In this section, we show examples of style-qGAN mod-
els obtained for known prior distribution functions in one
and three dimensions. The results presented here have
been obtained after a systematic process of fine-tuning
and manual hyper-optimization of the training and quan-
tum generator model.

A. 1D Gamma distribution

In order to test the framework proposed above, we con-
sider the sampling of a 1D gamma distribution with prob-
ability density function given by

pγ(x, α, β) = xα−1 e−x/β

βαΓ(α)
, (8)

where Γ is the Gamma function. In this example we
take pγ(x, 1, 1) as the input distribution and train a style-
qGAN with 1 qubit, 1 latent dimension and 1 layer us-
ing 104 samples from the input distribution. The total
number of trainable parameters is 10. We perform a lin-
ear pre-processing of the data to fit the samples within
x ∈ [−1, 1]. We undo this transformation after the train-
ing. In Figure 3 we show the evolution of the loss function
for the generator and discriminator models in terms of
the number of epochs. We observe the typical behavior
of GAN training and a convergence region after 15000
epochs. The style-qGAN is trained with batch sizes of
128 samples.

A necessary property of this framework is that the
style-qGAN model learns the underlying distribution
from a small data set. To demonstrate this, we train
a style-qGAN model with a set number of reference sam-
ples and then use it to generate two sample sets of dif-
ferent size. In particular, we train the style-qGAN with
104 reference samples and then use it to generate sets of
104 and 105 samples.

The top of Figure 4 shows the smaller sample distri-
bution generated by the style-qGAN model in blue and a
sampling of the reference distribution of the same size in

0 1 2 3 4 5 6 7 8
x

10 4

10 3

10 2

10 1

100

De
ns

ity
 o

f s
am

pl
es KL = 0.141

1D Gamma distribution - 104 samples
Reference
Generated

0 1 2 3 4 5 6 7 8
x

10 4

10 3

10 2

10 1

100

De
ns

ity
 o

f s
am

pl
es KL = 0.041

1D Gamma distribution - 105 samples
Reference
Generated

FIG. 4. Examples of 1D gamma distribution sampling for
the reference underlying distribution (red) and a style-qGAN
model (blue) that has been trained with 104 reference sam-
ples. The top plot compares 104 generated samples. The
bottom compares 105 samples generated from a style-qGAN
model trained with 104 reference samples. We observe a good
level of agreement between both distributions with low val-
ues of the KL distance, despite the model being trained on a
small training set.

red. This enables a comparison also using the Kullback-
Leibler divergence (KL) [60]. In both cases, the 104 sam-
ples have been transformed into histograms with 100 bins
linearly spaced on the x-axis of the figure. We observe
that the distributions are statistically similar even for
this high-density binning choice. The KL divergence of
two displayed distributions is 0.141, which entails a high
degree of similarity.

Going further in the bottom of Figure 4 we show the
same results as in the top on the larger set containing 105

samples. Again, we use for comparison a re-sampling of
the reference distribution at the same size as the gener-
ated set and show both distributions on a grid with 100
linearly spaced bins. Having generated an order of mag-
nitude more samples than the training set we observe
that the style-qGAN model performs well. Both distri-
butions are visually very close to each other and the KL
divergence of 0.041 signals a high degree of similarity.

In order to compare the two KL divergences, note that
they are computed on discrete histograms. Therefore, for
an honest comparison, the number of bins for the larger
sample set has to be increased proportionally to the in-
crease in generated sample size, i.e. to compare with 100
bins for the 104 sample size we need to set 1000 bins for



5

the 105 sample size. In this case, for a style-qGAN that
provides an equally good description of the underlying
distribution function, the KL divergence will stay con-
stant or decrease. Here, with this change in binning, we
find the KL divergences are 0.141 and 0.112, respectively.
This behavior confirms that the style-qGAN model is
able to learn the underlying distribution function even if
trained with a small training sample set. Such a feature
is particularly interesting in the context of data augmen-
tation applications [61, 62], where few samples are avail-
able, nonetheless the style-qGAN model can generalize
and learn the underlying distribution with satisfactory
outcome.

B. 3D correlated Gaussian distribution

The previous test shows that a style-qGAN model im-
plemented on a single qubit can be trained and produce
acceptable results. However, this particular set-up does
not include entanglement between qubits. In order to
study the impact of the entanglement term Uent in the
considered QNN, we select as an underlying distribu-
tion a 3D correlated Gaussian distribution centered at
µ = (0, 0, 0) with covariance matrix

σ =

 0.5 0.1 0.25
0.1 0.5 0.1
0.25 0.1 0.5

 . (9)

For this specific set-up, we consider a 3-qubit model
with 3 latent dimensions and 1 layer. The Uent con-
sists of two controlled-Ry gates acting sequentially on
the 3 qubits. The total number of trainable parameters
is 34. As in the previous example, we perform a lin-
ear pre-processing of the data to fit the samples within
x ∈ [−1, 1], and then we undo this transformation after
the training. In Table I we summarize the style-qGAN
configurations obtained for both examples discussed in
this section.

Following the same training procedure employed in
Section III A and again using 104 reference samples to
train the style-qGAN model, we test how well our model
samples this specific 3D correlated Gaussian distribution.
The results are shown in Figure 5. In the top row, we
compare the one-dimensional cumulative projections of
samples generated by the style-qGAN model with the ref-
erence input distribution function for 105 samples. We
again use a grid of 100 linearly spaced bins per dimension
in order to highlight small differences between the prior
reference distribution and the artificial samples. For this
example, we also observe that the distributions are sta-
tistically similar as the corresponding KL distances are
quite small and close to each other. In the second row,
we show 105 samples produced by the style-qGAN model
in two-dimensional projections.

To further study the features of the style-qGAN model
in the third row of plots in Figure 5 we show the two-
dimensional projections of the ratio between samples gen-

erated from the prior reference distribution and the style-
qGAN model. In this way, we can visualize how well the
model learns not only the distributions but also the corre-
lations between the dimensions of the problem. A ratio
of one, given by a white coloring of the corresponding
bin in the figure, would imply the reference and gener-
ated samples are identical. Note that we aim to generate
unseen samples, not an identical copy of the reference
set. However, at the same time, the model should not
diverge significantly, depicted by deep blue and red in
the figure, nor occupy space in the grey area of the fig-
ure. We observe a good level of agreement, in particular
in those regions where the sampling frequency is higher.
The largest deviations are seen at the edges of the dis-
tributions, where the sampling frequency is lower. These
deviations are evidence of the limitations in our model,
common to the GAN method; however, their severe ap-
pearance is an artifact of visualization due to data aug-
mentation.

To better quantify how well the correlations have been
learned, we study the covariance matrices defined by the
reference and the generated samples. The summed eigen-
values of the reference and generated covariance matri-
ces give a means to estimate the similarity between the
learned underlying correlations. We find agreement be-
tween the reference and generated eigenvalues to the bet-
ter of 10% for style-qGAN set-ups with equal and more
than 3 latent dimensions. Recall that the latent variables
are introduced in every gate of the circuit, including the
entangling ones Uent. With Dlatent < 3 we observe sig-
nificant deviations of factors O(10) while for Dlatent ≥ 3
no further significant improvement is seen. The same
holds for increasing the number of layers in the style-
qGAN model. This suggests that the number of latent
dimensions introduced is a key hyperparameter once the
number of layers allows a sufficient complexity. How-
ever, training success also depends on the convergence of
the GAN parameters through optimization. This means
that, in practice, having more layers and parameters than
the minimal set might be a better choice.

Since the eigenvalues are known also exactly through
Eq. 9 we furthermore can compare the performance of
the style-qGAN with increased generation sample size.
We find that the style-qGAN with 3 latent dimensions
and 1 layer (shown here) generates sets that reproduce
the exact eigenvalues of the input covariance matrix to
better than . 6% for 103, . 1.3% for 5×103 and . 0.8%
for 2× 104 samples.

This analysis demonstrates a key property of a func-
tioning GAN model – that the larger set of generated
samples more closely agrees with the reference input dis-
tribution function. The observation that our style-qGAN
fulfils this property confirms its viability as a function-
ing quantum implementation of the generative adversar-
ial network idea for multi-dimensional correlated data.



6

4 2 0 2 4
x

0

1000

2000

3000

4000
No

. o
f s

am
pl

es KL = 0.015

x-dimension 3D Gaussian 
 105 samples

Reference
Generated

4 2 0 2 4
y

0

1000

2000

3000

4000

No
. o

f s
am

pl
es KL = 0.045

y-dimension 3D Gaussian 
 105 samples

Reference
Generated

4 2 0 2 4
z

0

1000

2000

3000

4000

5000

No
. o

f s
am

pl
es KL = 0.060

z-dimension 3D Gaussian 
 105 samples

Reference
Generated

4 2 0 2 4
x

4

2

0

2

4

y

Generated - 105 samples

0

50

100

150

200

4 2 0 2 4
y

4

2

0

2

4

z

Generated - 105 samples

0

50

100

150

200

4 2 0 2 4
z

4

2

0

2

4

x

Generated - 105 samples

0

50

100

150

200

250

4 2 0 2 4
x

4

2

0

2

4

y

Ratio reference / generated

0

1

2

3

4

5

4 2 0 2 4
y

4

2

0

2

4

z

Ratio reference / generated

0

1

2

3

4

5

4 2 0 2 4
z

4

2

0

2

4

x

Ratio reference / generated

0

1

2

3

4

5

FIG. 5. Marginal samples distributions for each dimension x, y, z of the 3D correlated Gaussian distribution for the style-
qGAN model trained with 104 samples (top row), together with the corresponding two-dimensional sampling projections
(middle row) and the ratio to the reference underlying prior distribution (bottom row). The style-qGAN generator model
learns the correlations and provides acceptable samples when compared to the reference distribution. Note that we choose
a grey background for the plots at the bottom row to more clearly highlight a ratio of one between reference and generated
samples, indicated by white.

1D gamma 3D Gaussian
Qubits 1 3
Dlatent 1 3
Layers 1 1
Epochs 3× 104 1.3× 104

Training set 104 104

Batch size 128 128
Parameters 10 34
Uent None 2 sequential CRy gates

TABLE I. Summary of the style-qGAN set-up for the 1D
gamma distribution and the 3D correlated Gaussian distribu-
tion.

IV. GENERATING LHC EVENTS

After the validation of the style-qGAN model pre-
sented in the previous section, let us consider a training
dataset from HEP. One of the big challenges involving
Monte Carlo (MC) event generation is the large num-
ber of statistics required to reconstruct events with high
accuracy in order to compare predictions of physical ob-
servables to experimental data. Ideally, we could try to
learn how a specific physical process generates events.

In this context, we have generated 105 MC events for
pp→ tt̄ production at LHC with

√
s = 13 TeV with Mad-

Graph (MG5 aMC [63, 64]) at leading order in the strong
coupling constant. From this simulated events we sample
the Mandelstam variables (s, t) and the rapidity. Here,
s and t are understood as the local partonic variables,



7

s = (p1 + p2)2, t = (p1 − p3)2, where p1 and p2 are the
four-momenta of the incoming quarks within the proton
that collide to produce a top quark with four-momentum
p3 and an anti-top quark with four-momentum p4. Note
that all momenta are given in the center-of-mass frame.

We consider a 3-qubit model with 5 latent dimensions
and 2 layers. Again, Uent consists of two controlled-Ry
gates acting sequentially on the 3 qubits. The total num-
ber of trainable parameters is 62. The style-qGAN model
has been trained on 104 samples. See Table II for more
details. In this case, we perform a linear pre-processing
of the data to fit the samples within x ∈ [−1, 1] after a
power transform [65] from the Python package Scikit
Learn [66]. As previously, we undo this transformation
after the training.

Following the same training procedure employed in the
previous section, in the top row of Figure 6 we compare
the one-dimensional cumulative projections of samples
generated by the style-qGAN model with the reference
input distribution function for 105 samples. We use a grid
of 100 linearly spaced bins for y and 100 log-spaced bins
for s and t. For this example, the distributions are again
statistically similar, with the corresponding KL distance
being small and close to each other. In the second row
of Figure 6 we show 105 samples produced by the style-
qGAN model in two-dimensional projections.

The bottom row of plots in Figure 6 shows the ratio be-
tween samples generated from the prior original MC dis-
tribution and the style-qGAN model. Again, even for this
physically-realistic model, we observe a remarkable level
of agreement, especially in those regions where the sam-
pling frequency is higher. Most importantly, we observe
that the style-qGAN learns the correlations between the
three dimensions.

Applying the same reasoning as in the previous sec-
tion we compute the eigenvalues of the covariance matri-
ces derived from the reference and generated data sets.
To this extent we use the larger sized reference data
set calculated previously using MadGraph (MG5 aMC).
We find that the summed eigenvalues of the covariance
matrices derived from samples generated by the shown
style-qGAN with 5 latent dimensions and 2 layers agree
with the corresponding reference to ∼ 9 − 13% for 103,
∼ 8 − 15% for 5 × 103 and ∼ 7 − 14% for 2 × 104 sam-
ples. Here the quoted range originates from comparing
different samples of the reference data. Furthermore,
we suppress effects from the inverse transformation that
converts the generated sample and instead focus on the
learning capability of the style-qGAN model by estimat-
ing the covariances on the transformed reference data
sets. It should be stressed that this test is slightly dif-
ferent from the one in the previous section since the ex-
act eigenvalues are not known. As a result, the sam-
pling error of the reference enters and an agreement at
the previous level should not be expected as too close
of an agreement would indicate the model is overfitted.
However, our model exhibits the expected and necessary
behaviour, even when applied to real data.

pp→ tt̄ LHC events
Qubits 3
Dlatent 5
Layers 2
Epochs 3× 104

Training set 104

Batch size 128
Parameters 62
Uent 2 sequential CRy gates

TABLE II. Summary of the style-qGAN set-up for the LHC
events distribution.

V. SAMPLING FROM QUANTUM HARDWARE

In order to benchmark our style-qGAN model on real
quantum hardware, we performed several runs on two
different types of architectures. This allows us to qual-
itatively assess the impact of decoherence and noise, is-
sues that are typical for NISQ computers, and to check
whether the model can already give good results with-
out waiting for error-corrected machines. The first quan-
tum architecture we used is based on superconducting
transmon qubits as provided by IBM Q quantum com-
puters [67]. The second is based on trapped ion technol-
ogy as provided by IonQ quantum computers [68] and
accessible to us using cloud resources from Amazon Web
Services (AWS).

Implementing our style-qGAN onto real quantum
hardware introduces a new parameter into the model:
the number of shots done for each calculation. Specifi-
cally, we now perform a quantum experiment each time
we measure the three-qubit state, and we collect the re-
sults after a set number of experiments (shots) have been
carried out. These then build up expectation values that
are used to create generated samples. In this work we
typically perform a number of 1000 shots per sample.

Prior to running on actual quantum hardware, we per-
formed noise simulations using the IBM Q simplified
noise model, which provides an approximation of the
properties of real device backends, and enables us to test
how well the results presented in Section IV would be pre-
served in the noisy environment. Results are provided
in Appendix A and show that the impact of the noise
is expected to be visible to a degree. We leave noise
mitigation to further work. For the noise simulation as
well as the actual runs on IBM Q quantum devices, we
have selected in particular the ibmq santiago 5-qubit
Falcon r4L quantum processor. For our circuit, we need
only three qubits with at least one directly connected
to the other two. We use a translation layer written in
Qiskit [69] to implement the circuit in Figure 2 and au-
tomatically select the three qubits out of the five that
have the best noise properties. Note that this also allows
us to test the impact of potential interference between
qubits, as IonQ qubits are fully connected while those of
IBM Q are not.

We present in Figure 7 examples of samples that have



8

105 106 107

s (GeV2)

0

1000

2000

3000

4000

5000

No
. o

f s
am

pl
es KL = 0.064

s distribution - 105 samples
Reference
Generated

107 106 105

t (GeV2)

0
500

1000
1500
2000
2500
3000
3500

No
. o

f s
am

pl
es KL = 0.074

t distribution - 105 samples
Reference
Generated

2 0 2
y

0

500

1000

1500

2000

2500

No
. o

f s
am

pl
es KL = 0.050

y distribution - 105 samples
Reference
Generated

106 107

s (GeV2)

107

106

105

t (
G

eV
2 )

Generated - 105 samples

0

100

200

300

400

500

107 106 105

t (GeV2)

3

2

1

0

1

2

3

y

Generated - 105 samples

0

20

40

60

80

2 0 2
y

106

107

s (
G

eV
2 )

Generated - 105 samples

0

20

40

60

80

100

106 107

s (GeV2)

107

106

105

t (
G

eV
2 )

Ratio reference / generated

0

1

2

3

4

5

107 106 105

t (GeV2)

3

2

1

0

1

2

3

y

Ratio reference / generated

0

1

2

3

4

5

2 0 2
y

106

107

s (
G

eV
2 )

Ratio reference / generated

0

1

2

3

4

5

FIG. 6. Marginal samples distributions for the physical observables s, t, y in pp → tt̄ production at the LHC for the style-
qGAN model trained with 104 samples (top row), together with the corresponding two-dimensional sampling projections (middle
row) and the ratio to the reference underlying prior MC distribution (bottom row). The style-qGAN generator model learns
the correlations and provides acceptable samples when compared to the reference distribution. Note that we choose a grey
background for the plots at the bottom row to more clearly highlight a ratio of one between reference and generated samples,
indicated by white.

been generated using the ibmq santiago machine on
IBM Q. We use a 3-qubit model with 5 latent dimen-
sions and 1 layer and for which the hyperparameters are
the same as the ones used in Section IV and trained
on 104 samples. In contrast to the previous Sec. IV,
for this implementation in the quantum hardware we re-
duced the number of layers to one. This means that we
have trained a different style-qGAN with only one layer
and then deployed the model to the quantum architec-
ture. This change is motivated by the desire to diminish
the effect of noise by reducing the depth of the circuit.
Note, the analysis presented in Appendix A shows lit-
tle deviation between the one- and two-layer result ra-
tios, further strengthening this choice. To compute each
fake sample, we have performed 1000 shots on the quan-
tum circuits. In the top row of Figure 7, we compare

the one-dimensional cumulative projections of samples
generated by the style-qGAN model with the reference
input distribution functions for 105 samples. The bin-
ning choice is equivalent to that used in Figure 6. In
the middle row, we display the generation of 105 sam-
ples in two-dimensional projections. In the bottom row
of plots in Figure 7, we show again the ratio between the
reference samples, generated using the MC event gener-
ator, and the samples generated by the style-qGAN on
the ibmq santiago quantum hardware. As expected, the
agreement is worse than in Figure 6 because of the noise
and reduced capacity of the quantum generator, never-
theless the results are reasonable. The style-qGAN gen-
erator model deployed in this NISQ hardware still man-
ages to capture the correlations and provides reasonably
good samples when compared to the reference distribu-



9

105 106 107

s (GeV2)

0

1000

2000

3000

4000

5000

6000

No
. o

f s
am

pl
es KL = 0.677

s distribution - 105 samples
Reference
Generated

107 106 105

t (GeV2)

0

1000

2000

3000

4000

No
. o

f s
am

pl
es KL = 0.223

t distribution - 105 samples
Reference
Generated

2 0 2
y

0

500

1000

1500

2000

2500

3000

No
. o

f s
am

pl
es KL = 0.336

y distribution - 105 samples
Reference
Generated

106 107

s (GeV2)

107

106

105

t (
G

eV
2 )

Generated - 105 samples

0

100

200

300

400

500

107 106 105

t (GeV2)

3

2

1

0

1

2

3

y

Generated - 105 samples

0

20

40

60

80

2 0 2
y

106

107

s (
G

eV
2 )

Generated - 105 samples

0

20

40

60

80

100

106 107

s (GeV2)

107

106

105

t (
G

eV
2 )

Ratio reference / generated

0

1

2

3

4

5

107 106 105

t (GeV2)

3

2

1

0

1

2

3

y

Ratio reference / generated

0

1

2

3

4

5

2 0 2
y

106

107

s (
G

eV
2 )

Ratio reference / generated

0

1

2

3

4

5

FIG. 7. Marginal samples distributions for the physical observables s, t, y in pp → tt̄ production at the LHC using the style-
qGAN generator model trained with 104 samples on ibmq santiago (top row), together with the corresponding two-dimensional
sampling projections (middle row) and the ratio to the reference underlying prior MC distribution (bottom row). Note that
we choose a grey background for the plots at the bottom row to more clearly highlight a ratio of one between reference and
generated samples, indicated by white.

tion. The KL distances reported in the top row of plots
are still relatively small, at most one order of magnitude
larger than the KL distances reported in Figure 6.

During the current NISQ-era, the different quantum
hardware architectures are not standardized and can
have limits on the potential applications of the machines.
As part of the implementation of our model onto quan-
tum hardware, we were also able to study how the style-
qGAN performs across different platforms. The aim is to
understand whether and to what extent the style-qGAN’s
performance is hardware-dependent and also its potential
hardware transferability. In view of this study of differ-
ent quantum technologies, we have also performed a run
with 103 samples only, on IonQ machines and separately
on IBM Q machines. We have selected this fairly small
amount of samples mainly due to external constraints on
IonQ machine access on AWS. Note that the purpose of

these tests is not to compare the two different hardware
technologies, but instead to test whether the style-qGAN
model works well on different quantum architectures. We
use again a translation layer, written in Python with the
Braket SDK from Amazon, between our circuit and the
quantum hardware, and we have also performed around
1000 shots for the measurement of the generated sam-
ples. We stress again that although the amount of sam-
ples is quite low, the purpose of this test is to assess how
the algorithm performs on different quantum technolo-
gies using the same amount of samples, not to obtain
fine-grained results.

We show in Figure 8 the two-dimensional projections
using IBM Q ibmq santiago machine (upper row) and
IBMQ machine (lower row). It is clear that the sampling
is sparser than in Figure 7, due to the lower number of
samples; nonetheless, the style-qGAN captures the un-



10

106

s (GeV2)

106

105

t (
G

eV
2 )

Generated - 103 samples

0

1

2

3

4

5

6

106 105

t (GeV2)

2

1

0

1

2

y

Generated - 103 samples

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

2 0 2
y

106

s (
G

eV
2 )

Generated - 103 samples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

106

s (GeV2)

106

105

t (
G

eV
2 )

Generated - 103 samples

0

1

2

3

4

5

6

106 105

t (GeV2)

2

1

0

1

2

y

Generated - 103 samples

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

2 0 2
y

106

s (
G

eV
2 )

Generated - 103 samples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 8. Example of two-dimensional sampling projections for pp → tt̄ production using the style-qGAN generator model on
ibmq santiago (top row) and IonQ (bottom row) trained with 104 samples.

derlying distribution and correlations. This is particu-
larly visible on the left plots for the t − s correlation.
The comparison between the upper row and the lower
row also indicates that both architectures obtain similar
results. This demonstrates that the style-qGAN can give
good results on two different quantum hardware archi-
tectures.

VI. CONCLUSION

In this work, we explore the use of quantum neural net-
works (QNNs) for Monte Carlo event generation, specif-
ically for scattering processes at the Large Hadron Col-
lider (LHC). We focus specifically on quantum genera-
tive adversarial networks (qGANs), which employ two
competing networks, the generator and the discrimina-
tor, that are trained alternatively. Here we propose a
novel quantum generator model that does not follow the
traditional path where the prior noise distribution is pro-
vided to the quantum generator through its first quantum
gates. We instead choose to embed it on every single-
qubit and entangling gate of the network. This allows
for improvement on state-of-the-art results with a shal-
low QNN. As a similar concept has been utilized in the
classical context, coined as style-GANs, we choose to call
our novel architecture a style-qGAN.

As this is a new quantum generative architecture, the
body of this work focused on validating and assessing our

methodology on various data sets and hardware architec-
tures. In particular, we not only trained our model on toy
data, namely 1D gamma and 3D correlated Gaussian dis-
tributions, but also on data for real quantum processes at
the LHC, generated via MadGraph. For both toy data
and real data, we saw strong evidence that the style-
qGAN model could be used for data augmentation, as it
was able to reproduce known reference distributions from
small sample sets. Additionally, we deployed the models
on two different quantum hardware architectures – su-
perconducting qubits (IBM Q) and trapped ions (IonQ).
Despite working with a small sample set, we observed
that the style-qGAN works well on different hardware
architectures. This points to its hardware-independent
viability.

The results presented here should be considered as
a proof-of-concept, providing a robust and reproducible
starting point for future investigations. Nevertheless, this
is a first attempt to bridge the power of quantum machine
learning algorithms into the complexity of Monte Carlo
simulation in HEP. We wish that the approach presented
here will inspire new HEP applications that may benefit
from quantum computing.

ACKNOWLEDGMENTS

C.B.-P. acknowledges Stavros Efthymiou for useful dis-
cussions about the realization of the manuscript’s code.



11

S.C. thanks Marco Zaro and Luigi Favaro for discus-
sions about classical GAN models applied to Monte Carlo
events. This project is supported by CERN’s Quantum
Technology Initiative. M.C. is supported by the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sk lodowska-Curie grant agree-
ment number 843134. S.C. is supported by the European

Research Council under the European Union’s Horizon
2020 research and innovation Programme (grant agree-
ment number 740006). The authors acknowledge the
support of the CloudBank EU as a pilot brokering cloud
service at CERN, allowing for access to Amazon Web
Services in order to run our algorithm on IonQ hardware.
The authors also acknowledge the use of IBM Quantum
services for this work.

[1] J. Preskill, Quantum computing in the nisq era and be-
yond, Quantum 2, 79 (2018).

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao,
D. A. Buell, et al., Quantum supremacy using a pro-
grammable superconducting processor, Nature 574, 505
(2019).

[3] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C.
Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, et al.,
Quantum computational advantage using photons, Sci-
ence 370, 1460 (2020).

[4] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin,
S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan,
L. Cincio, et al., Variational quantum algorithms, Nature
Reviews Physics 3, 625–644 (2021).

[5] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug,
S. Alperin-Lea, A. Anand, M. Degroote, H. Hei-
monen, J. S. Kottmann, T. Menke, et al., Noisy
intermediate-scale quantum (NISQ) algorithms, arXiv
preprint arXiv:2101.08448 (2021).

[6] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost,
N. Wiebe, and S. Lloyd, Quantum machine learning, Na-
ture 549, 195 (2017).

[7] M. Schuld and F. Petruccione, Supervised learning with
quantum computers, Vol. 17 (Springer, 2018).

[8] N. Wiebe, D. Braun, and S. Lloyd, Quantum algorithm
for data fitting, Physical Review Letters 109, 050505
(2012).

[9] S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum algo-
rithms for supervised and unsupervised machine learning,
preprint arXiv:1307.0411 (2013).

[10] P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum sup-
port vector machine for big data classification, Physical
Review Letters 113, 130503 (2014).

[11] I. Kerenidis and A. Prakash, Quantum gradient descent
for linear systems and least squares, Physical Review A
101, 022316 (2020).

[12] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum al-
gorithm for linear systems of equations, Physical Review
Letters 103, 150502 (2009).

[13] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, Pa-
rameterized quantum circuits as machine learning mod-
els, Quantum Science and Technology 4, 043001 (2019).

[14] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, Express-
ibility and entangling capability of parameterized quan-
tum circuits for hybrid quantum-classical algorithms, Ad-
vanced Quantum Technologies 2, 1900070 (2019).

[15] C. Bravo-Prieto, J. Lumbreras-Zarapico, L. Tagliacozzo,
and J. I. Latorre, Scaling of variational quantum circuit
depth for condensed matter systems, Quantum 4, 272
(2020).

[16] M. Larocca, N. Ju, D. Garćıa-Mart́ın, P. J. Coles,
and M. Cerezo, Theory of overparametrization in quan-
tum neural networks, arXiv preprint arXiv:2109.11676
(2021).

[17] M. Schuld, R. Sweke, and J. J. Meyer, Effect of data
encoding on the expressive power of variational quantum-
machine-learning models, Physical Review A 103, 032430
(2021).

[18] T. Goto, Q. H. Tran, and K. Nakajima, Universal approx-
imation property of quantum machine learning models in
quantum-enhanced feature spaces, Physical Review Let-
ters 127, 090506 (2021).

[19] A. Pérez-Salinas, D. López-Núñez, A. Garćıa-Sáez,
P. Forn-Dı́az, and J. I. Latorre, One qubit as a universal
approximant, Physical Review A 104, 012405 (2021).

[20] V. Havĺıček, A. D. Córcoles, K. Temme, A. W. Harrow,
A. Kandala, J. M. Chow, and J. M. Gambetta, Super-
vised learning with quantum-enhanced feature spaces,
Nature 567, 209 (2019).

[21] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe,
Circuit-centric quantum classifiers, Physical Review A
101, 032308 (2020).

[22] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and
J. I. Latorre, Data re-uploading for a universal quantum
classifier, Quantum 4, 226 (2020).

[23] T. Dutta, A. Pérez-Salinas, J. P. S. Cheng, J. I. Latorre,
and M. Mukherjee, Realization of an ion trap quantum
classifier, arXiv preprint arXiv:2106.14059 (2021).

[24] J. Romero, J. P. Olson, and A. Aspuru-Guzik, Quantum
autoencoders for efficient compression of quantum data,
Quantum Science and Technology 2, 045001 (2017).

[25] A. Pepper, N. Tischler, and G. J. Pryde, Experimental
realization of a quantum autoencoder: The compression
of qutrits via machine learning, Physical Review Letters
122, 060501 (2019).

[26] C. Bravo-Prieto, Quantum autoencoders with enhanced
data encoding, Machine Learning: Science and Technol-
ogy 2, 035028 (2021).

[27] C. Cao and X. Wang, Noise-assisted quantum autoen-
coder, Physical Review Applied 15, 054012 (2021).

[28] M. Benedetti, D. Garcia-Pintos, O. Perdomo, V. Leyton-
Ortega, Y. Nam, and A. Perdomo-Ortiz, A generative
modeling approach for benchmarking and training shal-
low quantum circuits, npj Quantum Information 5, 1
(2019).

[29] K. E. Hamilton, E. F. Dumitrescu, and R. C.
Pooser, Generative model benchmarks for superconduct-
ing qubits, Physical Review A 99, 062323 (2019).

[30] B. Coyle, D. Mills, V. Danos, and E. Kashefi, The born
supremacy: quantum advantage and training of an ising
born machine, npj Quantum Information 6, 1 (2020).

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/physrevlett.113.130503
https://doi.org/10.1103/physrevlett.113.130503
https://doi.org/10.1103/physreva.101.032308
https://doi.org/10.1103/physreva.101.032308
https://doi.org/10.22331/q-2020-02-06-226


12

[31] P.-L. Dallaire-Demers and N. Killoran, Quantum genera-
tive adversarial networks, Physical Review A 98, 012324
(2018).

[32] S. Lloyd and C. Weedbrook, Quantum generative ad-
versarial learning, Physical Review Letters 121, 040502
(2018).

[33] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
Generative adversarial nets, Advances in neural informa-
tion processing systems 27 (2014).

[34] C. Zoufal, A. Lucchi, and S. Woerner, Quantum genera-
tive adversarial networks for learning and loading random
distributions, npj Quantum Information 5, 1 (2019).

[35] J. Zeng, Y. Wu, J.-G. Liu, L. Wang, and J. Hu, Learning
and inference on generative adversarial quantum circuits,
Physical Review A 99, 052306 (2019).

[36] H. Situ, Z. He, Y. Wang, L. Li, and S. Zheng, Quan-
tum generative adversarial network for generating dis-
crete distribution, Information Sciences 538, 193 (2020).

[37] L. Hu, S.-H. Wu, W. Cai, Y. Ma, X. Mu, Y. Xu, H. Wang,
Y. Song, D.-L. Deng, C.-L. Zou, et al., Quantum gener-
ative adversarial learning in a superconducting quantum
circuit, Science advances 5, eaav2761 (2019).

[38] M. Benedetti, E. Grant, L. Wossnig, and S. Severini, Ad-
versarial quantum circuit learning for pure state approx-
imation, New Journal of Physics 21, 043023 (2019).

[39] J. Romero and A. Aspuru-Guzik, Variational quantum
generators: Generative adversarial quantum machine
learning for continuous distributions, Advanced Quan-
tum Technologies 4, 2000003 (2021).

[40] M. Y. Niu, A. Zlokapa, M. Broughton, S. Boixo,
M. Mohseni, V. Smelyanskyi, and H. Neven, Entangling
quantum generative adversarial networks, arXiv preprint
arXiv:2105.00080 (2021).

[41] T. Karras, S. Laine, and T. Aila, A style-based gener-
ator architecture for generative adversarial networks, in
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2019) pp. 4401–4410.

[42] A. Pérez-Salinas, J. Cruz-Martinez, A. A. Alhajri, and
S. Carrazza, Determining the proton content with a
quantum computer, Physical Review D 103, 034027
(2021).

[43] W. Guan, G. Perdue, A. Pesah, M. Schuld, K. Terashi,
S. Vallecorsa, and J.-R. Vlimant, Quantum machine
learning in high energy physics, Machine Learning: Sci-
ence and Technology 2, 011003 (2021).

[44] S. Y. Chang, S. Vallecorsa, E. F. Combarro, and
F. Carminati, Quantum generative adversarial networks
in a continuous-variable architecture to simulate high en-
ergy physics detectors, arXiv preprint arXiv:2101.11132
(2021).

[45] S. Y. Chang, S. Herbert, S. Vallecorsa, E. F. Combarro,
and R. Duncan, Dual-parameterized quantum circuit gan
model in high energy physics, EPJ Web of Conferences
251, 03050 (2021).

[46] V. Belis, S. González-Castillo, C. Reissel, S. Vallecorsa,
E. F. Combarro, G. Dissertori, and F. Reiter, Higgs anal-
ysis with quantum classifiers, EPJ Web of Conferences
251, 03070 (2021).

[47] G. R. Khattak, S. Vallecorsa, F. Carminati, and G. M.
Khan, Fast simulation of a high granularity calorime-
ter by generative adversarial networks, arXiv preprint
arXiv:2109.07388 (2021).

[48] P. Baldi, L. Blecher, A. Butter, J. Collado, J. N. Howard,
F. Keilbach, T. Plehn, G. Kasieczka, and D. White-
son, How to gan higher jet resolution, arXiv preprint
arXiv:2012.11944 (2021).

[49] M. Backes, A. Butter, T. Plehn, and R. Winterhalder,
How to gan event unweighting, SciPost Physics 10
(2021).

[50] A. Butter and T. Plehn, Generative networks for lhc
events, arXiv preprint arXiv:2008.08558 (2020).

[51] A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman,
and T. Plehn, Ganplifying event samples, SciPost Physics
10 (2021).

[52] A. Butter, T. Plehn, and R. Winterhalder, How to gan
event subtraction, SciPost Physics Core 3 (2020).

[53] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn, and
R. Winterhalder, How to gan away detector effects, Sci-
Post Physics 8 (2020).

[54] A. Butter, T. Plehn, and R. Winterhalder, How to gan
lhc events, SciPost Physics 7 (2019).

[55] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto,
A. Pérez-Salinas, D. Garćıa-Mart́ın, A. Garcia-Saez,
J. I. Latorre, and S. Carrazza, Qibo: a framework for
quantum simulation with hardware acceleration, arXiv
preprint arXiv:2009.01845 (2020).

[56] S. Efthymiou, S. Carrazza, S. Ramos, bpcarlos, Adrian-
PerezSalinas, D. Garćıa-Mart́ın, Paul, J. Serrano, and
atomicprinter, qiboteam/qibo: Qibo 0.1.6-rc1 (2021).

[57] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
et al., TensorFlow: Large-scale machine learning on het-
erogeneous systems (2015), software available from ten-
sorflow.org.

[58] afrancis heplat, C. Bravo-Prieto, S. Carrazza, M. Cè,
J. Baglio, and d-m grabowska, Qti-th/style-qgan: v1.0.0
(2021).

[59] M. D. Zeiler, Adadelta: an adaptive learning rate
method, arXiv preprint arXiv:1212.5701 (2012).

[60] S. Kullback and R. A. Leibler, On information and suf-
ficiency, The annals of mathematical statistics 22, 79
(1951).

[61] M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger, and
H. Greenspan, Synthetic data augmentation using gan for
improved liver lesion classification, in 2018 IEEE 15th
international symposium on biomedical imaging (ISBI
2018) (IEEE, 2018) pp. 289–293.

[62] F. H. K. dos Santos Tanaka and C. Aranha, Data aug-
mentation using gans, arXiv preprint arXiv:1904.09135
(2019).

[63] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni,
O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and
M. Zaro, The automated computation of tree-level and
next-to-leading order differential cross sections, and their
matching to parton shower simulations, JHEP 07, 079.

[64] R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H. S.
Shao, and M. Zaro, The automation of next-to-leading
order electroweak calculations, JHEP 07, 185.

[65] I.-K. Yeo and R. A. Johnson, A new family of power
transformations to improve normality or symmetry,
Biometrika 87, 954 (2000).

[66] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, Dubourg, et al., Scikit-learn: Machine learn-
ing in Python, Journal of Machine Learning Research 12,
2825 (2011).

https://doi.org/10.1088/2632-2153/abc17d
https://doi.org/10.1088/2632-2153/abc17d
https://doi.org/10.1051/epjconf/202125103050
https://doi.org/10.1051/epjconf/202125103050
https://doi.org/10.1051/epjconf/202125103070
https://doi.org/10.1051/epjconf/202125103070
https://doi.org/10.5281/zenodo.5088103
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.5281/zenodo.5567077


13

[67] IBM’s roadmap for scaling quantum technology, Sept.
2020.

[68] Scaling IonQ’s Quantum Computers: The Roadmap,
Dec. 2020.

[69] G. Aleksandrowicz, T. Alexander, P. Barkoutsos,
L. Bello, Y. Ben-Haim, D. Bucher, F. J. Cabrera-
Hernández, J. Carballo-Franquis, A. Chen, C.-F. Chen,
et al., Qiskit: An Open-source Framework for Quantum
Computing (2019).

Appendix A: Noise simulation on IBM Q device

We have performed a noise simulation of our style-
qGAN on an IBM Q device, taking as a device baseline
the ibmq santiago 5-qubit Falcon r4L quantum proces-
sor that we have used for our runs on real IBM Q hard-
ware.

The noise model takes into account the readout error
probability of each qubit (mean value of the probabil-
ity of reading |1〉 while being in the state |0〉, and the
probability of reading |0〉 while being in the state |1〉),
the relaxation time constants of each qubit (relaxation
time and dephasing time), the gate error probability of
each basis gate, and the gate length (timing of the gate)

of each basis gate. The values are taken from the cali-
bration information of the selected device for the noise
simulation. Note that this calibration is performed at
regular intervals. The generation of 105 samples on the
actual machine took about one week, implying that the
calibration parameters may have varied significantly dur-
ing the full run.

We show in Figure 9 the result of our noise simulation.
The KL distances displayed in the top row are compa-
rable to the KL distances reported in Figure 7. We also
compare our noise simulation to the run on actual IBM Q
hardware, the latter being reported in Section V; this is
shown in the bottom row. The plots show a significant
amount of white points, signalling that the noise simu-
lation seems to capture most of the errors induced by
running on actual quantum hardware and that errors be-
yond the parameters reported in the previous paragraph
are subdominant.

We also compare our noise simulation to the noiseless
simulation. The results shown in Figure 10 indicate that
while the noise has an impact, as expected, there are still
many points close to the ratio of one; therefore the style-
qGAN still performs fairly well in a noisy environment.
This has led us to believe that running on actual quantum
hardware gives good results.

https://research.ibm.com/blog/ibm-quantum-roadmap
https://IonQ.com/posts/december-09-2020-scaling-quantum-computer-roadmap
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111


14

105 106 107

s (GeV2)

0

1000

2000

3000

4000

5000

No
. o

f s
am

pl
es KL = 1.379

s distribution - 105 samples
Reference
Generated

107 106 105

t (GeV2)

0
500

1000
1500
2000
2500
3000
3500

No
. o

f s
am

pl
es KL = 0.339

t distribution - 105 samples
Reference
Generated

2 0 2
y

0

500

1000

1500

2000

2500

No
. o

f s
am

pl
es KL = 0.172

y distribution - 105 samples
Reference
Generated

106 107

s (GeV2)

107

106

105

t (
G

eV
2 )

Generated - 105 samples

0

100

200

300

400

500

107 106 105

t (GeV2)

3

2

1

0

1

2

3

y

Generated - 105 samples

0

20

40

60

80

2 0 2
y

106

107

s (
G

eV
2 )

Generated - 105 samples

0

20

40

60

80

100

106 107

s (GeV2)

107

106

105

t (
G

eV
2 )

Ratio noise simulation / generated

0

1

2

3

4

5

107 106 105

t (GeV2)

3

2

1

0

1

2

3

y

Ratio noise simulation / generated

0

1

2

3

4

5

2 0 2
y

106

107

s (
G

eV
2 )

Ratio noise simulation / generated

0

1

2

3

4

5

FIG. 9. Marginal samples distributions for the physical observables s, t, y in pp → tt̄ production at the LHC using the
style-qGAN generator model in a noise simulation of ibmq santiago device (top row), trained with 104 samples (top row),
together with the corresponding two-dimensional sampling projections (middle row) and the ratio to the reference underlying
prior MC distribution (bottom row). Note that we choose a grey background for the plots at the bottom row to highlight when
the reference and generated samples are identical.

106 107

s (GeV2)

107

106

105

t (
G

eV
2 )

Ratio noiseless / noise simulation

0

1

2

3

4

5

107 106 105

t (GeV2)

3

2

1

0

1

2

3

y

Ratio noiseless / noise simulation

0

1

2

3

4

5

2 0 2
y

106

107

s (
G

eV
2 )

Ratio noiseless / noise simulation

0

1

2

3

4

5

FIG. 10. Ratio of two-dimensional sampling projections using the noise simulation of ibmq santiago device to the corresponding
noiseless simulation.


	 Style-based quantum generative adversarial networks for Monte Carlo events 
	Abstract
	I Introduction
	II Implementation
	A Workflow design
	B Optimization procedure
	C Quantum generator architecture

	III Validation examples
	A 1D Gamma distribution
	B 3D correlated Gaussian distribution

	IV Generating LHC events
	V Sampling from quantum hardware
	VI Conclusion
	 Acknowledgments
	 References
	A Noise simulation on IBM Q device


