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We derive a representation for a lattice U(1) gauge theory with exponential convergence in the
number of states used to represent each lattice site that is applicable at all values of the coupling.
At large coupling, this representation is equivalent to the Kogut-Susskind electric representation,
which is known to provide a good description in this region. At small coupling, our approach
adjusts the maximum magnetic field that is represented in the digitization as in this regime the
low-lying eigenstates become strongly peaked around zero magnetic field. Additionally, we choose
a representation of the electric component of the Hamiltonian that gives minimal violation of
the canonical commutation relation when acting upon low-lying eigenstates, motivated by the
Nyquist–Shannon sampling theorem. For (2+1) dimensions with 4 lattice sites the expectation value
of the plaquette operator can be calculated with only 7 states per lattice site with per-mille level
accuracy for all values of the coupling constant.

The Standard Model of Particle Physics, encapsulating
the vast majority of our understanding of the fundamen-
tal nature of our Universe, is at its core a gauge theory.
Much of the richness of its phenomenology can be traced
back to the complicated interplay of its various gauged
interactions. While massive theoretical and algorithmic
developments in classical computing have allowed us to
probe many of these aspects, there remain a plethora
of open questions that do not seem amenable to these
methods. With a fundamentally different computational
strategy, quantum computers hold the promise to sim-
ulate the dynamics of quantum field theories from first
principles, allowing access to ab-initio predictions of ob-
servables that are inaccessible using existing techniques
on classical computers. In order to harness the full poten-
tial of quantum computers, an efficient implementation of
the Hamiltonian of gauge theories on quantum processors
is a mandatory first step. This is no simple task due to
the redundancies inherent to any gauge theory, as well
as the finite number of degrees of freedom inherent to
any simulation. For a review of various approaches, both
analog and digital, see [1–7].

A consequence of gauge invariance is that the number
of physical states, i.e. those that obey Gauss’ Law, is
exponentially smaller than the number of states in the
full Hilbert space. While techniques for enforcing gauge
invariance have been developed that do not restrict to
physical states (see for example [8–18]), limited quantum
resources make it preferable to define the Hamiltonian
purely in terms of physical states. Additionally, in or-
der to be implemented onto a digital quantum computer,
the physical Hilbert space must be finite. This requires
not only choosing a truncation and digitization scheme,
but also determining a finite-dimensional representation
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of the various operator components of the Hamiltonian.
These schemes and representation must be chosen such
that the discrete Hamiltonian reproduces the physics of
the continuum theory with a sufficiently high fidelity and
with quantifiable errors. There has been much effort in
developing various methods and formulations, including
magnetic or dual basis representations [19–22], prepoten-
tials with a basis of loop, string and hadron excitations
[23–29], discrete subgroups and group space decimation
[30–33], mesh digitization [34], light-front formulations
[35, 36] and orbifold lattice methods [37, 38]. For work
on experimental realizations, see [39–44].

For this work, we focus on Abelian lattice theories,
particularly U(1) lattice gauge theories . One well-known
implementation of such a theory is the Kogut-Susskind
(KS) Hamiltonian [45–49]. In this formulation, the Hamil-
tonian is defined in terms of integer-valued electric fields,
plus plaquettes that act as lowering operators, due to
the canonical commutation relations. As this formula-
tion is naturally written in the electric basis, it is easy
to truncate the theory by truncating the electric field
values. While the KS formulation is a general formalism
for an untruncated theory in the electric-field basis, in
this letter, we generally refer to the truncated version as
the KS representation. This representation gives a highly
efficient and accurate description in the limit of strong
coupling, as in this regime the electric fluctuations are
small and so the eigenstates of the electric Hamiltonian
are close to the eigenstates of the full Hamiltonian.

On the other hand, the electric basis does not provide
for an efficient representation of a U(1) gauge theory when
approaching the continuum limit. For gauge theories
in two or less spatial dimensions, or asymptotically-free
theories in three spatial dimensions, the continuum limit
corresponds to the weak-coupling limit. As the continuum
is approached and the coupling constant decreases, the
widths of the eigenstate wave functions in the electric
basis increase, such that a truncation at a fixed value
of the electric field becomes inadequate. On the other
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hand, the support of the wave function in the magnetic
basis decreases as the coupling decreases, indicating that
these gauge theories are more efficiently represented in
the magnetic basis.

In this work we derive a new digitized representation
of a U(1) gauge theory that that is efficient, regardless of
the strength of the gauge coupling. The implementation
of this representation proceeds in two steps. The first is
determining the optimal digitization and truncation of the
magnetic field values, as we always work in the magnetic
basis. The second is determining the representation of
the electric Hamiltonian in the magnetic basis. The main
focus of this work is motivating a simple and analytic
expression for the magnetic field digitization, as well
as a choice for the electric Hamiltonian that allows for
a maximally faithful representation of the lowest-lying
states.

This representation has several properties that are
highly advantageous for quantum simulation. Primar-
ily, this representation is extremely resource-efficient and
is able to reproduce the lowest-lying eigenstates of the sys-
tem with exponential precision. This efficiency is two-fold.
The first is that the required number of states per lattice
site is quite small for the degree of precision achieved.
The second is that due to analytic expressions for optimal
truncation values, the need for a computationally and
time-intensive optimization routine is eliminated. While
we leave a detailed study for future work, we believe that
the representation presented here can be implemented
onto qubits with minimal modification. These proper-
ties indicate that this representation is well-tailored for
working near the continuum limit while utilizing quan-
tum hardware. Additionally, the representation works
regardless of the strength of the coupling; in fact, at large
coupling it is related to the well-known KS formulation
via a simple Fourier transform.

Magnetic-basis formulations have previously been con-
sidered in, for example [19, 21], with [21] focusing on cre-
ating a resource-efficient representation at weak coupling.
After presenting the derivation of our representation, we
will provide a brief discussion comparing to this work.
More details can be found in the Supplemental Material.

The pure gauge part of a U(1) gauge theory is given by
the Hamiltonian

H =
1

2

∫
ddx

[
~E(x)2 +B(x)2

]
. (1)

where, for simplicity, we will work in (2+1) dimensions,
and only comment about (3+1) dimensions in the end.
Here the electric and magnetic field are related to the
vector potential by

~E(x) =
d ~A(x)

dt
, B(x) = ~∇× ~A(x) , (2)

and we work in the A0(x) = 0 gauge. Note that the curl
of a vector field is a 2-form, which in (2+1) dimensions is
dual to a scalar.

Gauge invariance implies Gauss’ law

[
~∇ · ~E − ρ

]
|Ψ〉 = 0 , (3)

giving a constraint on physical states |Ψ〉. This constraint
can be solved by writing [22, 50]

~E = ~EL + ~ET , (4)

where the longitudinal and transverse fields can be written
as

~∇ · ~EL = ρ , ~ET = ~∇×R . (5)

Here ρ denotes the charge density, and R is again a two-
form. Thus, in the absence of electric charges, the Hamil-
tonian can be written in terms of the two scalar quantities,
R and B, which satisfy the commutation relations

[B(x), R(y)] = iδ(x− y) . (6)

The field R (which was called L in the original work [50])
was coined a “rotor” field in [21].

This Hamiltonian can be put directly on the lattice
via two different formulations. These two formulations,
corresponding to non-compact and compact U(1) gauge
groups, have the same continuum limit, but noticeably
different behavior at finite lattice spacing, Using dimen-
sionless variables and rescaling A → A/g, E → gE, the
Hamiltonian for a non-compact U(1) group is given

HNC =
1

2a

∑

p

[
g2(~∇×Rp)2 +

1

g2
B2
p

]

≡ HE +HNC
B . (7)

where a is the latice spacing. Here g denotes the bare
lattice coupling, whose relation to the physical observables
in the continuum limit depends on parameters of the
lattice. The sum is over plaquettes (with the subscript p

on the operators acting as an index) and ~∇×Rp is the
lattice curl, defined in [50]. Alternatively, the gauge field
can be compactified onto a circle, leading to the compact
version of the U(1) gauge theory with HC = HE + HC

B .
This changes the magnetic Hamiltonian, whose compact
form is given by

HC
B =

1

a

∑

p

1

g2
(1− cosBp)

=
1

2a

∑

p

1

g2
(2− Pp − P †p ) , (8)

where the plaquette operator Pp is defined as

Pp = eiBp . (9)

Note that the more familiar but analogous form of the
plaquette operator is the product over the gauge links
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that are required when constructing gauge invariant inter-
actions of gauge fields and fermions. The commutation
relations on the lattice are now given by

[Bp, Rp′ ] = iδp,p′ . (10)

This compact representation is the KS Hamiltonian. In
the following, we will usually work with the compact
version of the Hamiltonian, but our final results will be
applicable to the non-compact Hamiltonian as well.

Setting the convention to denote operators by upper
case letters and their eigenvalues by the corresponding
lower case ones, notice that the compact nature of the
magnetic field immediately leads to an integer spectrum
in the rotor fields

Rp |rp〉 = rp |rp〉 , rp ∈ Z . (11)

In fact, from the commutation relation (10) one can easily
verify that the plaquette operators acts as a lowering
operator

Pp |rp〉 = |rp − 1〉 . (12)

Thus, the KS Hamiltonian is naturally represented in the
electric (rotor) basis. One can switch to the magnetic
basis through a Fourier transform

|bp〉 =

∞∑

r=−∞
eibprp |rp〉 , (13)

which immediately demonstrates the compact nature of
the magnetic states |bp + 2π〉 = |bp〉.

In order to represent this field theory on digital (quan-
tum) devices, the magnetic field, which is currently contin-
uous, needs to be digitized. A standard way is to represent
the magnetic field through 2L + 1 discrete equidistant
points symmetric between −π and π, which turns the
continuous U(1) gauge group into a discrete Z(2L + 1)
gauge group, and introduces a spacing in the magnetic
field given by δb = 2π/(2L+1). Note that by choosing an
odd number of points one can cover b = 0 while keeping
the representation symmetric. This digitization in turn
introduces a maximum value rmax in the electric basis,
such that −L < r < L.

This representation is best suited to represent the the-
ory at large values of the coupling, where the system is
dominated by the electric Hamiltonian and eigenstates
have most of their support at low values of r. How-
ever, it is very inefficient at small coupling. This can
be understood from the fact that at small coupling, the
magnetic Hamiltonian dominates and the lowest-lying
eigenstates therefore have support only in a narrow re-
gion around b = 0. To accurately represent the sharply
peaked wavefunctions requires a small value of δb, which
in turn necessities large L, making the representation very
costly.

A more efficient formulation can be found by working
directly in the magnetic basis and digitizing the magnetic

field values directly. This requires two key points to be
addressed. The first is choosing a value for the maximal bp
included in the digitization. As the magnetic Hamiltonian
is diagonal in the magnetic basis, there is a natural ‘best
choice’ for its representation once the maximum bp is
fixed. The second is determining the representation of
the electric Hamiltonian, which is no longer diagonal.

For the non-compact theory, the width of the wave
function in the electric and magnetic basis (wR and wB ,
respectively) scale with the coupling constant as

wR ∼ 1/g , wB ∼ g . (14)

For the compact theory, this approximation still holds for
small coupling while at large coupling, the wavefunctions
in the magnetic basis have support for the full space,
bp ∈ [−π, π]. An efficient digitization needs to sample
values of b and r in the region of their support. For small
values of g this requires the sampling of the magnetic field
in the region

|b| < bmax ∼ g , (15)

while in the compact theory at large values of g the
sampling needs to be over the full range |b| < π. In other
words, (15) defines the region of support for the magnetic
field, and one then uses 2`+ 1 discrete values within this
range to digitize the field value. Thus, we sample the
magnetic field at each plaquette at the values

b(k)p = −bmax + k δb , δb =
bmax

`
, (16)

with 0 ≤ k ≤ 2`. This implies that the digitized conjugate
rotor field satisfies

r(k)p = −rmax +

(
k +

1

2

)
δr , (17)

with with 0 ≤ k ≤ 2` and

δr =
2π

δb(2`+ 1)
, rmax =

π

δb
. (18)

Note that for general bmax the spacing of the rotor fields δr
is no longer equal to 1, unlike in the compact undigitized
lattice theory. This deviation away from δr = 1 is key
to having an efficient and accurate representation. As
we will discuss below, in the limit `→∞ we recover the
usual relation δb = 2π/(2`+ 1) such that δr = 1.

Before addressing how to find the optimal value for bmax,
it is first necessary to discuss the optimal representation of
the electric Hamiltonian in the magnetic basis. Multiple
representations of the electric Hamiltonian in the magnetic
basis are possible, and all of them should belong to the
same universality class. However, these representations
differ in their resource requirements and also the degree
of error they accumulate at finite lattice coupling. One
choice is to use a finite difference representation of the
relation R = −i∂b. Another representation was provided
in [21], which we review in the Supplemental Material.
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However, for our representation, we choose to follow
the example of [51] and represent the electric Hamiltonian
by its exact eigenvalues and use a Fourier transform to
put it into the magnetic basis. Recall that for conjugate
variables, the eigenstates of the rotor operator are related
by Fourier transform to the eigenstates of the magnetic
field operator

∣∣∣r(k)p

〉
=

1√
2`+ 1

2∑̀

k′=0

ei
2π

2`+1 (k−`)(k
′−`− 1

2 )
∣∣∣b(k′)p

〉

≡
2∑̀

k′=0

(FT)kk′

∣∣∣b(k′)p

〉
. (19)

One can therefore represent each rotor via

〈
b(k)p

∣∣∣Rp
∣∣∣b(k

′)
p′

〉
=

2∑̀

n=0

r(n)p (FT)
−1
kn (FT)nk′ δpp′ . (20)

The rest of this letter will be dedicated to demonstrating
that, with an appropriate choice of bmax, this represen-
tation is an extremely efficient and accurate choice for
all values of the gauge coupling. Note that the magnetic
field operator in the magnetic basis is simply

〈
b(k)p

∣∣∣Bp
∣∣∣b(k

′)
p′

〉
= b(k)p δkk′δpp′ . (21)

Having chosen the representation of the operators, the
problem at hand is now how to choose the optimal value of

b
(p)
max for a given value of ` such that the digitized theory is

as close as possible to the continuum theory. It was shown
in [52, 53] that the condition that the canonical commu-
tation relation be minimally violated gives the optimal
digitization for the quantum harmonic oscillator, with
corrections suppressed exponentially in the dimension of
the Hilbert space. We apply a very similar condition to
find the optimal value of bmax for both the non-compact
and compact theory.1 We choose this criteria since the
canonical commutation relations are what defines the
undigitized theory. Ensuring that they are minimally
violated is crucial for producing a faithful representation
and replicating the theory’s fundamental features. We
define the ‘canonical commutator expectation value’ as

〈
C(`)
p

〉
[bmax] ≡ 1 + i

〈
Ω(`)

∣∣∣ [Bp, Rp]
∣∣∣Ω(`)

〉
, (22)

where the ground state and the spectrum of the operators
also depend on the value of bmax, g and `. We now define

1 One might worry that it is not appropriate to apply this criteria
to the compact theory. However, at small coupling the compact
and non-compact theory are quite similar. At large coupling,
bmax is constrained by the maximal range of the magnetic field
space itself and there is no need for truncation criteria. In the
Supplemental material we show that this condition is quite useful
for a weakly-coupled compact version of the harmonic oscillator.

bmax as the value that minimized 〈C(`)
p 〉[bmax],

b(p)max(g, `) = argmin
[
〈C(`)

p 〉[bmax]
]
, (23)

and we indicated the dependence of bmax on the values of
g and `. Note that in general the condition in (23) gives a
different value of bmax for each plaquette. However these
differences are quite small and so final analytic expression
utilizing uses a universal bmax.

For a quantum harmonic oscillator (QHO), the condi-
tion that the canonical commutation relation be minimally
violated has been previously used to derive analytically the
optimal value of bmax(`) = 2`

√
π/(4`+ 2) [52, 53]. This

analysis can be repeated for the non-compact U(1) theory
in the following way. First, notice that the non-compact
U(1) Hamiltonian is a three-dimensional QHO which can
be reduced to three one-dimensional QHOs by neglecting
terms that couple different lattice sites together. With
this as-of-yet unjustified simplification, and taking into
account relative factors of two and g, the optimal value
of bmax is found to be

bNC
max(g, `) = g`

√ √
8π

2`+ 1
. (24)

This expression is modified for the compact theory, due
to the finite maximum range of the magnetic field. In
this case, bmax is given by

bCmax(g, `) = min

[
bNC
max,

2π`

2`+ 1

]
, (25)

where the second expression is the bmax value in the KS
formulation. At sufficiently large values of `, bCmax will
always be equal to 2π`/(2`+ 1) and therefore δr = 1.

With this final step, we now have a fully defined repre-
sentation of a 2 + 1 dimensional U(1) lattice gauge theory
that is valid at all values of the coupling. Before present-
ing several numerical tests of the proposal, let us quickly
present the proposal in a unified, step-by-step manner.

1. Determine the desired (odd) number of states, n,
per lattice site, the value of the bare gauge coupling
and whether to use the compact or non-compact
theory. Recall ` is related to n via n = 2`+ 1.

2. Use (25) or (24) to determine bmax, depending on
whether the desired gauge groups is compact or
non-compact.

3. With bmax and ` in hand, the total Hamiltonian
can be written down, using the operator definitions
given in (20) and (21).

We emphasis again that this procedure works well at
any value of the gauge coupling and also for both the
non-compact and the compact formulations.

We conclude this letter by presenting two numerical
tests of this formulation. In particular, we focus on the
smallest possible system in 2 + 1 dimensions, namely four
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FIG. 1: The smallest non-trivial system in two spatial
dimensions, which four lattice sites and boundaries that
are periodically identified. The theory can be formulated
either in terms of electric fields and plaquettes or in
terms of rotors and plaquettes. One plaquette can
always be removed.

lattice sites and periodic identification of the boundaries.
Imposing Gauss’s law by hand and constraining to the
trivial topological sector, the degrees of freedom are three
rotors and three plaquettes. This system was previously
derived and studied in [21] for the compact gauge group.

The Hilbert space of this system is spanned by three
magnetic fields, which we choose to denote as

∣∣∣b(k)
〉
≡ ⊗

p

∣∣∣b(kp)p

〉
.

=
∣∣∣b(k1)1 b

(k2)
2 b

(k3)
3

〉
, (26)

where k is the vector of state labels for the magnetic
operators. The magnetic Hamiltonian for the compact
theory is diagonal with
〈
b(k)

∣∣∣HNC
B

∣∣∣b(k′)
〉

(27)

=
1

a

1

g2

(
4−

3∑

p=1

cos b(kp)p − cos

[
3∑

p=1

b(kp)p

])
δkk′ ,

while for the non-compact theory one replaces each cos(b)
by 1− b2/2. The matrix elements of the electric Hamilto-
nian are given by

〈
b(k)

∣∣∣HE

∣∣∣b(k′)
〉

= −2g2

a

2∑̀

ni=0

(FT)
−1
kn (FT)nk′

×
(
r
(n1)
1

(
r
(n2)
2 + r

(n3)
3

)
−

3∑

p=1

(
r(np)p

)2
)
, (28)

where we have used the notation (FT)kk′ =
∏
i (FT)kik′i

.

A diagram of this system is shown in Fig. 1
In Fig. 2 we show the dependence of the theory on the

value of bmax for the non-compact theory. The values
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FIG. 2: Dependence of the non-compact theory on the
value of bmax for two values of `. The dashed and dotted
lines show the commutator expectation value for the first
and second/third lattice plaquette as a function of
bmax/b

NC
max. In the solid lines we show the results for

energy difference compared to the analytical result. All
curves are minimized for values of bmax ≈ bNC

max. As these
plots are for the non-compact theory, they are
independent of the value of g.

of the 〈Cp〉[bmax] are shown by the dashed and dotted
lines. The solid lines show the difference of the energies
of the first three eigenstates of the Hamiltonian when
compared to the exact value in the continuum limit. One
can see that all curves have a minimum at very similar
locations, and that these minima are very close to the
analytical value bCmax given in (25). The method to solve
the non-digitized theory is presented in the Supplemental
Materials (Section III).

As a second result, we present the expectation of the
plaquette operator

〈�〉 = −g
2a2

V
〈Ψ0|HB |Ψ0〉 , (29)

where |Ψ0〉 is the ground state of the theory and V is
the number of plaquettes in the system, which is four in
this case.2 This matrix element has been considered in
the past [54], and allows for comparisons to [21]. The

2 Note that we eliminated one plaquette in the Hamiltonian as the
effect of acting with this extra plaquette is the same as acting
with the product of the Hermitian conjugate of the other three
plaquettes.
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FIG. 3: Expectation value of the plaquette operator for
` = 2 (red), ` = 3 (green), ` = 4 (blue). The solid lines
show the results of this work, while the dashed lines with
circles and dotted lines with cross marks denote the
results of [21] in the magnetic and electric basis,
respectively. The ratios to the result of our work with
` = 6 are shown below. In the bottom plot we also show
the analytical solution of the non-compact theory, which
should give the correct result at low values of g.

result is shown in Fig. 3, where the solid lines correspond
to the result of this work, while the dashed and dotted
lines correspond to the results of [21] in the magnetic and
electric basis, respectively. We can see that our results
have very good convergence over the entire range of the
coupling constant, and with ` = 3 we have per-mille
level accuracy for all values of g. As discussed before,
the magnetic (electric) basis of [21] only works at small
(large) couplings, and one can see that at small coupling

the magnetic basis is only able to reach percent-level
accuracy, even for larger `.

To summarize, in this letter we presented a novel formu-
lation of (2 + 1)-dimensional U(1) lattice gauge theories.
This formulation is able to reproduce the low-lying spec-
trum of the theory with per-mille or better accuracy while
utilizing minimal resources. This formulation digitizes a
Hamiltonian that only contains physical states (i. e. Gauss’
law has been imposed a priori), utilizing an analytic ex-
pression to estimate the optimal maximum field value
based on the gauge coupling and the available resources
for each lattice site. We believe that this procedure can be
extended to larger systems in (2 + 1)-dimensions, though
it becomes increasingly difficult to test this using classi-
cal resources, as the dimensionality of the Hilbert space
scales with polynomial powers of 2` + 1. We leave the
exploration of how well this formulation, particularly the
analytic expression for bmax, works in larger systems for
future work involving quantum resources. Additionally, a
similar procedure should be applicable to (3 + 1) dimen-
sions, though there arises an additional constraint that
will complicate the procedure [22]. We close by noting
that this work focused on a formulation of U(1) gauge
theories that was efficient in the overall dimension of the
Hilbert space. An efficient implementation on digital
quantum computers also requires a representation that
can be implemented with efficient resources in quantum
gates. While we believe our representation allows for such
an efficient implementation, we leave a detailed study of
the implementation in terms of quantum circuits in future
work.
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Supplemental Material to

Efficient Representation for Simulating U(1) Gauge Theories on Digital Quantum Computers at All
Values of the Coupling

Christian W. Bauer, Dorota M. Grabowska

I. REVIEW OF THE FORMULATION OF HAASE ET. AL. [21]

In Ref. [21] an approach for an efficient representation at small coupling was advocated, which proceeded in two
steps. First, the compact U(1) theory was mapped onto a Z(2L+ 1) theory, which digitizes the continuous B field into
2L+ 1 discrete values. This Z(2L+ 1) theory has spacing

δb(L) =
2π

2L+ 1
, (S1)

while keeping δr = 1. A second truncation was then performed that only kept the (2`+ 1) states with smallest absolute
value of b. The truncation to 2`+ 1 states implies that all magnetic fields with value b > bmax, with

bmax(`, L) = ` δb =
2π`

2L+ 1
(S2)

are neglected. The operator representation of the Z(2L+1) is chosen such that the magnetic and electric representations
are the Fourier transforms of one another. Note that in [21] representations in both the electric and magnetic basis were
given, and we review here only their magnetic basis. In the main paper, comparisons to both of their representations
are presented.

While the representation of [21] reduces to the KS Hamiltonian for the choice ` = L, as does the representation
developed in this work for the choice bNC

max(`) = 2π`/(2`+ 1), the two theories are fundamentally different for different
values of L or bmax. The main difference lies in the representation of the electric Hamiltonian in the magnetic basis. In
the work of [21] the truncated electric basis is obtained using the identity

r =

2L∑

ν=1

fsν sin

(
2π ν r

2L+ 1

)

r2 =

2L∑

ν=1

f cν cos

(
2π ν r

2L+ 1

)
+
L(L+ 1)

3
, (S3)

with

fsν =
(−1)ν + 1

2π

[
ψ0

(
2L+ 1 + ν

4L+ 2

)
− ψ0

(
ν

4L+ 2

)]

f cν =
(−1)ν

4π2

[
ψ1

(
ν

4L+ 2

)
− ψ1

(
2L+ 1 + ν

4L+ 2

)]
, (S4)

which holds for integer values of r. The sin and cos functions can be related to exponentials using

sin

(
2π ν r

2L+ 1

)
=
ei

2π ν r
2L+1 − ei 2π ν r2L+1

2i

cos

(
2π ν r

2L+ 1

)
=
ei

2π ν r
2L+1 + ei

2π ν r
2L+1

2
, (S5)

Combining these relations with the operator relation (with
∣∣b(L+1)

〉
=
∣∣b(−L)

〉
)1

ei
2π ν Rp
2L+1

∣∣∣b(k)p

〉
=
∣∣∣b(k+ν)p

〉
, (S6)

1 Note that the integer values labeling the digitized magnetic field
are now chosen to run over the values −` < k < `, rather than

0 < ` < 2` as chosen in our approach.
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gives the expression for the rotor field operators in the magnetic basis

Rp =

2L∑

ν=1

fsν
1

2i

∑̀

k=−`

[∣∣∣b(k)p

〉〈
b(k+ν)p

∣∣∣−
∣∣∣b(k+ν)p

〉〈
b(k)p

∣∣∣
]

R2
p =

2L∑

ν=1

fsν
1

2

∑̀

k=`

[∣∣∣b(k)p

〉〈
b(k+ν)p

∣∣∣+
∣∣∣b(k+ν)p

〉〈
b(k)p

∣∣∣
]

+
L(L+ 1)

3

∑̀

k=−`

∣∣∣b(k)p

〉〈
b(k)p

∣∣∣ . (S7)

As already mentioned, for ` = L this representation agrees with the one chosen in our work if the same value of
bmax = 2π`/(2`+ 1) is used. However, once truncated with ` < L, the two representations no longer agree, even if one
ensures that the bmax values agree. Note that as explained in [21], the truncation is performed such that applying a
lowering operator to the state

∣∣b(−`)
〉

simply annihilates the state, and does not give the state
∣∣b(`)

〉
.

Proceeding with the construction of [21], the discussion so far has determined the representation of the operators in
the magnetic basis, given a value of ` chosen small enough that it can be simulated on a given choice of hardware.
The only thing left to do is to choose a value L, which amounts to choosing a value of δb that allows for an efficient
sampling of the states in the magnetic basis. The work of [21] advocated to use a so-called sequence fidelity, defined as

F (l, L) =
∑̀

~k=−`

〈
Ψ0(`, L)

∣∣∣b(~k)
〉〈

b(
~k)
∣∣∣Ψ0(`+ 1, L)

〉
. (S8)

For small values of the coupling constant, the sequence fidelity generally exhibits a local minimum when plotted as
a function of L (For ` = 2 a local minimum is not present for all values of the coupling constant, but a kink in the
dependence of the sequence fidelity when plotted as a function of L is often still present.) The value of L where this

100 101 102

1/g2

101

4× 100

6× 100

2× 101

3× 101

L
op

t

` = 3

` = 4

` = 5

FIG. 1: Dependence on the value of Lopt as defined via the sequence fidelity given in Eq. (S8) on the coupling
constant g. We show the results for values ` = 3, 4, 5 in green, blue and magenta, respectively. For values above about
g . 0.37 the value of Lopt starts to rise proportional to g. The plot looks similar to the Fig. 3(d) of [21], but a
detailed comparison is not possible due to the log-log nature of the plots.

local minimum or kink occurs is the chosen value of L. For larger values of the coupling constant the local minimum
disappears, and in this case [21] choose the value L = `+ 1. In Fig. 1 we show the results of the optimal value Lopt we
obtain from this analysis. While the log-log plots make it difficult to compare our results exactly to the results in
Fig. 3(d) of [21], our results seem to be in general qualitative agreement. For a coupling of g = 0.1 the values of Lopt(`)
we obtain are given in Table I. The values of Lopt we obtain for this value of g are in agreement with the values that
can be read off Fig. 9 of [21].
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` 2 3 4 5 6 7 8 9

Lopt 14 20 24 29 32 36 39 42
bmax(`, Lopt) 0.43 0.46 0.51 .53 0.58 0.60 0.64 0.67
bCmax(`) 0.27 0.34 0.40 0.45 0.50 0.54 0.58 0.62

TABLE I: The values of Lopt as determined from the sequence fidelity in Eq. (S8) for g = 0.1. The obtained values
agree with the results that can be read off from Fig. 9 of [21]. We also show the corresponding value of bmax(`, Lopt)
that is obtained from Eq. (S2) in comparison with the value obtained from the procedure described in this work

We finish this section with a few comments. First, as already mentioned, the magnetic representation of [21] chooses
Lopt to be at least of size `+ 1. This implies that it does not coincide for any value of g or ` with the representation
presented in this work. Furthermore, it also means that the magnetic representation is never equivalent to the electric
basis, as it would be for the choice L = `. We believe that this is the main reason why the magnetic basis of [21]
performs so poorly at large values of g. Second, choosing a value L is equivalent to choosing a value of δb(`, Lopt). As
can be seen from Table I the resulting value of δb differs from the analytical value used in our work, but the two values
have the same overall trend, as expected. Finally, we reiterate that even choosing the exact value of bmax as was done
in our work, the two representations differ.

II. A SIMPLE TOY MODEL: THE HARMONIC OSCILLATOR

In this Section, we present a toy model that can be solved analytically for both the compact and non-compact form.
The main purpose of this toy model is to explore the error induced in the the compact formulation from using the
analytic expression for bmax.

The toy model is a one-dimensional quantum harmonic oscillator (QHO) and we look at a non-compact as well as a
compact formulation. The non-compact version is simply the standard QHO

H =
g2β2

p

2
P 2 +

β2
x

2g2
X2

= HP +HNC
X , (S9)

where we have introduced a coupling g to more closely resemble the full theory, as well as the parameters {βx, βp} to
allow for relative rescalings of the operators. The compact Hamiltonian is given by

H =
g2β2

p

2
P 2 +

β2
x

2g2
(2− 2 cosX)

= HP +HC
X . (S10)

In both formulations, the operators X and P have the canonical commutation relation

[X,P ] = i , (S11)

and we choose to work with the variables {X,P} instead of {B,R} to make the notation more closely resemble a
harmonic oscillator.

A. Analytical Solutions

The analytical solution to the quantum harmonic oscillator is well known, and the eigenvalues and eigenstates are
given by

En = βxβp

(
n+

1

2

)

〈x|φn〉 =

√
1

2nn!

(
1

πg2
βx
βp

)1/4

e
− βxβp

x2

2g2Hn

[√
βx
βp

x

g

]
, (S12)
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Function n Period Parity Characteristic Value

cen(z) 0, 2, 4, . . . π even an
cen(z) 1, 2, 3, . . . 2π even an
sen(z) 2, 4, 6, . . . π odd bn
sen(z) 1, 2, 3, . . . 2π odd bn

TABLE II: The period and parity of the four different Matthieu Functions of the First Kind of Integral Order. We
also show the convention for denoting the corresponding value of a, for a given q, such that the functions have the
desired periodicity.

We have expressed the wave function in the basis spanned by eigenstates of the operator X

X |x〉 = x |x〉 , 〈x|x′〉 = δ(x− x′) . (S13)

The compact version of the Harmonic oscillator is more complicated to solve analytically, but can be expressed in terms
of Mathieu functions of the first kind. Mathieu functions are solutions to the characteristic second order differential
equation

d2y

dz2
+ (a− 2q cos 2z) y = 0 . (S14)

There exist a specific class of these functions, generally called Matthieu Functions of the First Kind of Integral Order
that have either a period of π or 2π and definite odd or even parity. These four functions only occur when the
parameters a and q are suitably related. We follow the convention that the Matthieu functions that reduce to cosnz
when q = 0 are called Cen(z) and those that reduce to sinnz when q = 0 are called Sen(z). The corresponding
values, which we call ‘characteristic numbers’ of a are denoted by an for Cen(z) and bn for Sen(z). The functions
Cen(x, q) and Sen(x, q) are also called cosine-elliptic and sine-elliptic functions. Summarizing, the periodicity, parity
and characteristic numbers are shown in Table II. A property of these characteristic numbers is that for a given value
of n and scanning through different values of q, the different characteristic numbers cannot intersect, except for at
q = 0 [55]. This allows us to assign a state label to each energy level that is independent of the coupling constant. For
negative q, which is the region of interest for this system, the ordering is as follows

a0 < b2r < a2r

a2r−1 < b2r−1 r = 1, 2, 3, . . . (S15)

It is amusing to note that for positive q, a0 < bn < an for any positive integer n.
For the toy model, all four types of Matthieu functions are allowable eigenstates. However, upon digitization of

the theory, only certain eigenvalues appear, depending on the exact digitization of the eigenvalues of the HP . If
the eigenvalues of HP are symmetric around zero, only the states with period π appear, while if the eigenvalues of
HP are asymmetric around zero, only the states with period of 2π appear. These different choices in digitization
are equivalent to setting different boundary conditions. Combining all of this, the solutions for the toy model can
be classified by whether the eigenvalues of HP are symmetric or not. For the boundary condition that results in a
symmetric digitization, the energies are given by

E(S)
n =

g2β2
p

8
f (S)n [q] +

β2
x

g2
q = − 4

g4
β2
x

β2
p

n = 0, 1, 2, 3, . . . (S16)

where the functions f
(S)
n are related the the Matthieu characteristic numbers via

f (S)n [x] =

{
an[x] n even
bn+1[x] n odd

, (S17)

and the corresponding eigenfunctions are given by

〈
x
∣∣∣φ(S)n

〉
=

{
N

(S)
n Cen

(
x
2 , q
)

n even

N
(S)
n Sen+1

(
x
2 , q
)

n odd
. (S18)

For the boundary condition that gives rise to asymmetric boundary conditions, the energies are given by

E(A)
n =

g2β2
p

8
f (A)
n [q] +

β2
x

g2
q = − 4

g4
β2
x

β2
p

n = 0, 1, 2, 3, . . . (S19)
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n f
(S)
n φ

(S)
n E

(S)
n (g = 0.5) E

(S)
n (g = 2)

0 a0 Ce0 0.492059 0.23448
1 b2 Se2 1.45971 2.2474
2 a2 Ce2 2.3936 2.26291
3 b4 Se4 3.29152 8.25104
4 a4 Ce4 4.15087 8.25104

(a) The first few eigenstates and their corresponding
energies for the toy model, with boundary conditions that
result in a symmetrically digitized HP .

n f
(A)
n φ

(A)
n E

(A)
n (g = 0.5) E

(A)
n (g = 2)

0 a1 Ce1 0.492059 0.621214
1 b1 Se1 1.45974 0.870971
2 a3 Ce3 2.3936 4.75183
3 b3 Se3 3.29152 4.75208
4 a5 Ce5 4.15087 12.7507

(b) The first few eigenstates and their corresponding
energies for the toy model, with boundary conditions that
result in an asymmetrically digitized HP .

TABLE III: The first few eigenstates and their corresponding energies for the toy model. We provide the value of the
energies for two different values of the coupling, g = 0.5 and g = 2, evaluated at βx = βp = 1. Notice that for small
coupling, the energies are close the QHO with frequency equal to one.

where the functions f
(A)
n are again related the the Matthieu characteristic numbers via

f (A)
n [x] =

{
an+1[x] n even
bn[x] n odd

, (S20)

and the corresponding eigenfunctions are given by

〈
x
∣∣∣φ(A)
n

〉
=

{
N

(A)
n Cen+1

(
x
2 , q
)
n even

N
(A)
n Sen

(
x
2 , q
)

n odd
. (S21)

When comparing these analytical solution to the digitized theory, the periodic or antiperiodic bounndary conditions
are imposed via the exact representation chosen for the HP . We show the first few energy values and eigenstates in
Table III.

The analytic solution for this class of toy models was also found in [56] and we agree with their result if βx = 1 and
βp = 2 and periodic boundary conditions are imposed.

B. Digitization

This toy model can also be solved by digitization. In this case, instead of having a continuous Hilbert space
characterized by the basis states |x〉, one chooses a discrete set of states |xi〉 with 〈xk|xk′〉 = δkk′ and

x(k) = −xmax + kδx , δx =
xmax

`
. (S22)

In our convention, k ∈ [0, 2`] and the Hilbert space therefore has dimension 2`+ 1 and {xmax, `} are parameters that
can be freely chosen, though there is an optimal value of xmax for each value of `.

The Hamiltonian HX is easily written in its digitized form

〈xk|HNC
X |xk′〉 =

1

2a

β2
x

g2
x2k δkk′

〈xk|HC
X |xk′〉 =

1

2a

β2
x

g2
(2− 2 cosxk) δkk′ .

For the Hamiltonian HP there are several definitions possible. The first is to use the operator relation P 2 = −d2/dx2
and to use a discretized second derivative to obtain

〈xk|H(1)
P |xk′〉 =

1

2a

β2
pg

2

(δx)2
[2δkk′ − δk,k′−1 − δk−1,k′ ] ,

≡ 1

2a

β2
pg

2

(δx)2

[
2Ikk′ − Tkk′ − T †kk′

]
. (S23)

Here Ikk′ and Tkk′ denote the identity and lowering operator, respectively

I |xk〉 = |xk〉 , T |xk〉 = xk−1 . (S24)
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Note that the lowering operator can also be thought of as a translation operator in momentum space. In this
representation, there is only one free parameter, the integer L. Since the digitized system is finite, boundary conditions
must be imposed. For periodic boundary conditions and open boundary conditions, the lowering operator obeys,
respectively,

T (PBC) |x0〉 = T2N T (OBC) |x0〉 = 0 . (S25)

However, as was shown in Ref. [51], this definition of HP does an extremely poor job of reproduce the low-energy
spectrum of the theory due to poor sampling of the region that has the largest support.

An alternative representation is to use the ‘exact’ eigenvalue method, advocated for in Ref. [51] and used in the
main body of this manuscript. This method uses the fact that HP is diagonal in the conjugate space spanned by |pk〉,
where the two spaces are related by Fourier transform. The conjugate space satisfies

pk = −pmax +

(
k +

1

2

)
δp , (S26)

where we have chosen a symmetric digitization of the momentum eigenvalues and

δp =
2π

δx(2`+ 1)
pmax =

π

δx
. (S27)

The Hamiltonian is then given by

〈xk|H(2)
P |xk′〉 =

β2
pg2

2a

∑

n

p2n (FT)
−1
kn (FT)nk′ . (S28)

In this representation, there are two free parameters, xmax and ` and so we are free to set xmax to an optimal value.

C. Choosing an optimal value of δx

The optimal value of δx is chosen such that the lowest-lying eigenvalues of the digitized theory are exponentially
close to the eigenvalues of the continuum theory. For the non-compact theory, the optimal value can be motivated by
looking at the eigenstates in the continuum theory. Note that any one-dimensional QHO can be rescaled such that

H =
1

2
X̃2 +

1

2
P̃ 2 . (S29)

The eigenstates of this Hamiltonian are given by Eq. (S12) with g = βx = βy = 1. For this choice of parameters
the width of the wave function in position and momentum space are the same, and one can therefore intuitively
understand that the best digitization of this theory will have δp = δx. Combining this with (S22) and (S27) gives

x̃max(`) = `
√

2π/(2`+ 1) [57]. Carefully undoing the re-scaling results in a expression for xmax of

x̃max(`) = g `

√
βp
βx

√
2π

2`+ 1
. (S30)

This intuitive argument was put on firm footing by Ref. [52, 53], where it was shown that (S30) can be derived by
requiring that in the digitized theory the canonical commutation relation [X,P ] = i is minimally violated. With the
choice of (S30) one can show that the commutation relations satisfy

∑

k′

〈xk| [X,P ] |xk′〉 〈xk′ |Ψn〉 = i 〈xk|Ψn〉+O(εn) , (S31)

where

εn ∼
∫ ∞

xmax(`)

dx |〈x|Ψn〉|2 , (S32)

is of order the support of the wave function that lies beyond the maximal value xmax(`), which vanishes exponentially
as ` is increased. Note, however, that εn grows with n, which implies that the correct commutation relations are only
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observed for the lowest lying states for which (S32) is sufficiently small. Since the eigenvalues of the Hamiltonian are

derived from the commutation relations, one immediately finds that the digitized model gives energy eigenvalues E
(`)
n

which approach the correct energy eigenvalues exponentially as ` is increased

εn(L) = |En − E(`)
n | ∼ ane−(2`+1) . (S33)

For the compact version of the QHO the formal proofs do not apply directly. However, given that the value given
in (S30) gives a very good approximation to the commutation relation for all values of n for which the support of the
wave function above xmax is small, it gives a good approximation to any linear combination of these wave functions.
One therefore should expect this relation to also work on the eigenstates of a different theory, as long as the support of
the lowest lying wave functions has a very similar extent in x. In particular, the lowest lying wave functions of the
compact harmonic oscillator have very similar support as the non-compact version, as long as the wave function is not
spread through the full compact space −π < x < π. This is no longer true when g is sufficiently large. However, since
we choose a different value for xmax when this occurs, the statement is still valid. Thus, the analytical expression for
the optimal value of xmax in the regular QHO should hold in the compact QHO, as long as the coupling g is sufficiently
small to ensure narrow enough lowest-lying states. Therefore, we define the optimal xmax value in the non-compact
theory to be

xNC
max = g`

√
βp
βx

√
2π

2`+ 1
. (S34)

This expression is modified for the compact theory, due to the finite maximum range of the magnetic field. In this
case, xmax is given by

xCmax = min

[
xNC
max,

2π`

2`+ 1

]
, (S35)

where the second expression is the xmax value in the formulations with HP = H
(1)
P

D. Numerical Crosschecks
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FIG. 2: Comparison of xmax to xCmax for ` = 3, 4, g = 0.1 and βx, βp = 1. The solid lines show the fractional difference
between the energies of the digitizied compact theory and the analytic result; the dashed line shows the deviation from
the canonical commutation relation, as defined in Eq. (S36).

In order to check the validity of using the analytic expression for xmax, we compare the lowest-lying eigenvalues for
the digitized theory to the exact results found in (II A). Additionally, we calculate the deviation from the canonical
commutation relations via the function

〈
C(`)

〉
≡ 1 + i 〈Ψ0| [X,P ] |Ψ0〉 . (S36)

For both comparisons, we vary bmax in relation to bNC
max in order to test how well the analytical expression for bmax

performs. This comparison is shown in Fig. 2 and Fig. 3. For simplicity’s sake, we choose βx = βp = 1; however, the
goodness of our results is independent of βx, βp.
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FIG. 3: Same as Fig. 2, but with g = 0.7. Note that for ` = 4, the value of xCmax freezes out at g ∼ 0.83 and the theory
becomes equivalent to the KS formulation.

Fig. 2 shows that for small values of the coupling the minimum of the commutator relation as well as the minima in
the fractional energy differences occur essentially at the same point as the analytical result derived in the non-compact
theory, indicated by the ratio being 1 on the x-axis. While this results is expected, since at such small values of the
coupling the compact and non-compact theory should be very similar, the numerical confirmation is still good to
see. At larger values of the coupling, shown in Fig. 3, this is no longer true exactly, but the deviations from the
analytical result of xmax are rather small, and the difference in the fractional energy differences to the optimal result
are quite small as well. Note also that the optimal result depends on the excitation one looks at, which is of course not
something that can be handled in a general simulation.

III. ANALYTICAL SOLUTION FOR THE NON-COMPACT U(1) THEORY

The studies of the previous section demonstrate that, at least for small coupling, the non-compact version of the
theory offers important insight on the compact theory. This is a useful observation, as the small coupling limit
corresponds to the continuum limit of the theory. Therefore, it seems prudent to attempt to analytically solve the
undigitized version of the non-compact theory. In this Section, we take the full (2 + 1)-dimensional pure U(1) theory
but take the smallest non-trivial system – four lattice points and periodic boundary conditions, as shown in Fig 1. In
this case, the Hamiltonian is given by

H =
2g2

a

[
R2

1 +R2
2 +R2

3 −R1(R2 +R3)
]

︸ ︷︷ ︸
HR

+
1

2g2a

[
B2

1 +B2
2 +B2

3 + (B1 +B2 +B3)2
]

︸ ︷︷ ︸
HNCB

, (S37)

where all the B variables are related to the plaquette operator via (9). Noting the exchange symmetry of R2 ↔ R3, we
implement a change of basis such that the rotor Hamiltonian has no mixed terms. Since this is a unitary transformation,
the canonical commutation relations are unchanged. With this change of basis, we have that

HR = g2
(

2R2
1 +

(
2 +
√

2
)
R2

2 +
(

2−
√

2
)
R2

3

)

HNC
B =

1

2g2

(
B2

1 +
5− 2

√
2

2
B2

2 +B2B3 +
5 + 2

√
2

2
B2

3

)
, (S38)

where as long as the operator transformations do not alter the canonical commutation relations, we do not distinguish
between the old and new operators. This Hamiltonian can be further simplified by recalling that the canonical
commutation relations are also preserved if the operators are rescaled as

Bi → αiBi Ri →
1

αi
Ri . (S39)

Choosing specific values for αi transforms the Hamiltonian into

HR =
1

2

(
R2

1 +R2
2 +R3

3

)

HNC
B =

1

2

(
4B2

1 +
(

6 +
√

2
)
B2

2 + 2
√

2B2B3 +
(

6−
√

2
)
B2

3

)
. (S40)
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With this form, any unitary transformation leaves HR unchanged and so we can now diagonalize HNC
B . Doing so

results in the Hamiltonian

H =
1

2

(
R̃2

1 + R̃2
2 + R̃3

3

)
+

1

2

(
4B̃2

1 + 8B̃2
2 + 4B̃2

3

)
, (S41)

where we now introduced the ‘tilde’ notation to distinguish these operators from the original ones; {R̃i, B̃i} still obey
the canonical commutation relations. This form of the Hamiltonian is three one-dimensional quantum harmonic
oscillators and so the total energy is given by

En1,n2,n3
= 2

(
n1 +

1

2

)
+ 2
√

2

(
n2 +

1

2

)
+ 2

(
n3 +

1

2

)
. (S42)

This expression for the energy of the undigitized theory was used in Fig. 2. It is possible to find the correspond
eigenstates in the original basis, making use of the fact that in the basis of eigenvectors of B̃i, the eigenstates are

ψ(b̃1, b̃2, b̃3) = N
(
e−b̃

2
1Hn1

[√
2b̃1

])(
e−
√
2b̃22Hn2

[(
2
√

2
)1/2

b̃2

])(
e−b̃

2
3Hn3

[√
2b̃3

])
(S43)

and the transformation from the ‘tilde’ operators to the original ones are given by

b̃1 →
b3 − b2
2
√

2g
, b̃2 →

b3 + b2

2
√

2g
, b̃2 →

2b1 + b2 + b3

2
√

2g
. (S44)
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