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3OpenLab, CERN - 1211 Geneva, Switzerland
(Dated: March 10, 2022)

Accurate molecular force fields are of paramount importance for the efficient implementation
of molecular dynamics techniques at large scales. In the last decade, machine learning methods
have demonstrated impressive performances in predicting accurate values for energy and forces
when trained on finite size ensembles generated with ab initio techniques. At the same time,
quantum computers have recently started to offer new viable computational paradigms to tackle
such problems. On the one hand, quantum algorithms may notably be used to extend the reach of
electronic structure calculations. On the other hand, quantum machine learning is also emerging
as an alternative and promising path to quantum advantage. Here we follow this second route and
establish a direct connection between classical and quantum solutions for learning neural network
potentials. To this end, we design a quantum neural network architecture and apply it successfully
to different molecules of growing complexity. The quantum models exhibit larger effective dimension
with respect to classical counterparts and can reach competitive performances, thus pointing towards
potential quantum advantages in natural science applications via quantum machine learning.

I. INTRODUCTION

Since more than half a century, atomistic simulations
represent one of the sharpest tools available for scientific
investigation in a wide range of research fields, such as
chemistry, materials science and biology [1, 2]. To per-
form a Molecular Dynamics (MD) calculation, in which
the classical equations of motion are numerically inte-
grated for each atom in the system under study, an accu-
rate knowledge of potential energy surfaces (PES) and
local forces is required. This information, originating
from the quantum mechanical behaviour of electrons and
nuclei, could in principle be deducted from the exact so-
lution of the Schrödinger equation. However, the com-
plexity of such task makes it impractical beyond a few
small-scale paradigmatic examples. In a delicate balance
between performance and accuracy, approximate solution
methods such as density functional theory (DFT) have
therefore been proposed, leading to the family of so called
ab initio MD techniques [3, 4]. These precise yet com-
putationally demanding strategies can be applied up to
medium-sized systems, while larger problems may only
be tackled, typically at a lower accuracy, with empirical
force fields (FFs) [5]. In fact, MD runs require on-the-
fly computations of energy and forces at each time step
and for each configuration visited by the system during
its evolution: therefore, the use of simple parametrized
functional potentials (e.g., the FFs) that can be evalu-
ated in a fraction of the time required by actual quantum
mechanical calculations is the only viable strategy when
thousands of atoms are involved.

Recently, machine learning (ML) has emerged as a new
technological paradigm offering promising and effective
solutions for physics and chemistry [6, 7]. In the context
of MD simulations, a pioneering approach to ML-powered
force fields was proposed by Beheler and Parrinello us-
ing neural networks [8]. The original idea has later been

refined and extended [9–16], also promoting the develop-
ment of specific software libraries [17, 18]. The funda-
mental insight behind the so called neural network po-
tentials (NNPs) is two-fold: first, they incorporate the
idea that large performance gains can be achieved by di-
rectly modelling some form of functional relationship be-
tween structure (i.e., atomic positions) and properties of
interest (e.g., energies), essentially bypassing the explicit
solution of the underlying quantum mechanical problem.
Second, NNPs typically enjoy the generalization capabili-
ties of ML models, maintaining extremely good accuracy
even on previously unseen configurations when trained
on data sets constructed with ab initio methods.

Despite the success of classical ML techniques in the
realm of atomic and molecular dynamical processes,
the quantum mechanical character of the fundamen-
tal laws governing such phenomena immediately leads
to the question whether quantum machine learning
(QML) methods could provide further significant advan-
tages [6, 19, 20]. Indeed, also thanks to the high prac-
tical relevance of the problem, the learning and genera-
tion of molecular force fields may constitute a very nat-
ural and appealing playground in which QML could be
tested and compared with state-of-the-art classical coun-
terparts. An important aspect of such comparison lies
in the fact that the properties to be learned, namely the
relationship between configurations, energies and forces,
are generally hard to be derived directly from first prin-
ciples due to their quantum mechanical origin. At the
same time, it has recently been suggested that informa-
tion theoretical complexity considerations are strongly
affected by the availability of training data even when
quantum systems are involved [21], with classical ML
methods showing competitive performances, e.g., in pre-
dicting non-trivial many-body properties [22]. Several
important questions may therefore be addressed, from
an overall assessment of the capabilities of QML proto-
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cols for PES and force fields reconstruction to systematic
tests of classical versus quantum techniques for learning
specific quantum mechanical properties through data.

In this work, we take a first step in such direction by es-
tablishing a direct connection between QML and NNPs.
In particular, we demonstrate how quantum neural net-
works (QNNs) can be employed, in combination with
classical data sets, as trainable models for the prediction
of energies and forces in molecular systems. Although
many different realizations of QNNs and quantum per-
ceptrons are known in the literature [23–31], here we will
focus on variational parametrized quantum circuits [32–
36], which offer the greater flexibility for near term ap-
plications. It is worth mentioning that some instances of
QNNs, such as the ones that we will implement in the fol-
lowing, are known to exhibit greater power, as measured
by the effective dimension in model space, compared to
their classical equivalents [37] – a fact that places them
among the most promising candidates in the quest for
quantum advantage in machine learning. We also no-
tice that, while variational quantum algorithms are often
employed for the direct ab initio computation of Hamil-
tonian spectra [38, 39] and corresponding forces [40], here
we take a rather different approach [41], using quantum
resources to learn an implicit mapping between atomic
coordinates, energy and forces, without any explicit so-
lution of the quantum mechanical problem itself.

II. MODEL AND METHODS

A. Quantum neural networks

We adopt a supervised learning approach with

training sets of the form A = {(~Cα, Eα, ~Fα)},
namely collections of n-atom molecular config-

urations ~Cα = (xαa1
, yαa1

, zαa1
, . . . , xαan , y

α
an , z

α
an)

with associated total energies Eα and forces
~Fα = (Fαa1,x, F

α
a1,y, F

α
a1,z, . . . , F

α
an,x, F

α
an,y, F

α
an,z). Here,

the index α runs over the different elements of the train-
ing set, cαai for c = x, y, z is the Cartesian coordinate of
the i-th atom and

Fαai,c = −∂Eα
∂cαai

(1)

is the force acting on atom ai along the direction c. We
will also denote with |A| the number of samples contained
in A.

The training data, derived from classical ab initio
methods that will be specified in the following, are used
to optimize the predictions made by quantum models,
specifically quantum neural networks. These are based
on the general notion of parametrized quantum circuits
(PQCs) [31, 33, 35], consisting of a reference initial
state |0〉, an output observable O and a model unitary
M(~x,Θ), depending on both some input data ~x and a set

of trainable parameters Θ = {~θ0, . . . , ~θD}. The function

expressed by a QNN takes the general form

fΘ(~x) = 〈0|M(~x,Θ)†OM(~x,Θ) |0〉 (2)

and can be represented schematically as shown in Fig. 1.
In practical realizations, we allow for an additional clas-
sical preprocessing map ~y = W (~x), which in our spe-
cific context can serve the purpose of converting between
Cartesian coordinates and more suitable molecular de-
scriptors, as well as enhancing the effective nonlinearity
of the model [32].

It is also worth noticing that, contrary to the usual
feed-forward scheme of classical neural networks, QNNs
are quite easily designed and interpreted in the form of re-

uploading circuits [42, 43], where trainable layers U`(~θ`),
red in Fig. 1, are alternated with data encoding ones
Φ`(~y), blue in Fig. 1, with the same classical input values
appearing multiple times.

In fact, it has been shown that the re-uploading
mechanism makes QNNs universal functional approxima-
tors [42–44]: more specifically, any QNN output function
(Eq. 2) can be recast into a truncated Fourier series with
a set of available independent frequencies determined by
the eigenvalues of the encoding map and growing with the
number of re-uploading steps. While recent results sug-
gest that, by expanding the size of the quantum registers,
these models can actually be mapped back on simpler se-
quential ones in which all input operations appear at the
beginning [45], one can still profit from the insights of-
fered by the re-uploading picture as a guide for intuition
in the actual design of application-specific QNNs. As an
example, theory suggests that, by adjusting the number
of input layers, the richness of the Fourier spectrum can
be systematically increased.

The structure of QNNs is completed by choosing a
physical observable O and a suitable loss function L,
whose minimization drives the update of the trainable
parameters via a classical optimization routine. In the
following, we will make the simple choice

O = σ1
z . (3)

namely we will take the expectation value of the Pauli-z
operator on the first qubit to contruct the network out-
put. Moreover, we will use a quadratic Mean Square
Error (MSE) loss function

Lχ(A,Θ) = MSE(Energy) + χ ·MSE(Forces). (4)

with the hyperparameter χ weighting the contribution of
energy and forces [46]. In practice, we directly associate
the output of the QNN with the energy potential surface
by defining

MSE(Energy) =
1

|A|
∑
α∈A

(
fΘ(~Cα)− Eα

)2

. (5)

In parallel, consistent predictions for the forces are ob-
tained by taking the derivative of the quantum circuit
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M(x⃗,Θ)
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x⃗ W

|0⟩⊗N U0(θ⃗0) Φ1(y⃗)) U1(θ⃗1) ΦD(y⃗)) UD(θ⃗D) O

Θ L(x⃗,Θ)

Figure 1: Quantum neural network model. The input
data ~x are preprocessed with the classical (green)

function W and encoded with the map Φ (blue). The
variational layers (red) contain free parameters that are

optimized to minimize the loss function L(~x,Θ). O
represents the computation of the expectation value of

the observable through a quantum measurement.

output with respect to the molecular coordinates:

MSE(Forces) =
1

3n · |A|
∑
α∈A

∥∥∥∇cfΘ(~Cα)− ~Fα

∥∥∥2

. (6)

We leave for future works the investigation of alternative
strategies, such as the use of two independent quantum
circuits for the separate learning of energies and forces.

B. Encoding layers

As mentioned in the previous section, the encoding
operations Φ`(~y) are used to input the molecular config-
urations in the QNN model. Here, we assume for sim-
plicity that these encoding unitaries are identical across
different layers or re-uploading stages, i.e., Φ`(~y) ≡ Φ(~y).
Moreover, let us denote by N the linear dimension of the
feature vector ~y, where in general N can differ from 3n
due to the preprocessing stage. Following standard prac-
tices [47], we will use N qubits to encode and manipulate
N -dimensional features ~y = (y1, . . . , yj , . . . , yN ).

The quantum feature map Φ(~y) is then constructed
according to the expression

Φ(~y) = E(~y)S(~y) (7)

where S(~y) is a collection of single-qubit Pauli-y rotations

S(~y) =

N∏
j=1

exp

(
−iσ

(j)
y

2
yj

)
(8)

and E(~y) is an entangling operation of the form

E(~y) =
∏

(j,k)∈P
exp

(
−iσ(j)

z σ(k)
z yjyk

)
. (9)

The latter directly resembles the so called ZZ feature
map originally introduced in Ref. [47]. The set of qubit
pairs P can be chosen in different ways, balancing ease of
implementation on physical architectures with functional
expressivity. Standard examples include linear entangle-
ment

Plinear = {(j, j + 1) | j = 1, . . . , N − 1}, (10)

circular entanglement

Pcirc = {(j, j + 1 mod N) | j = 1, . . . , N}, (11)

and full entanglement

Pfull = {(j, k) | j = 1, . . . , N − 1, k > j}. (12)

For further generality, we also define a natural extension
of the ZZ feature map to degree l interactions, adding
factors of the form

exp

(
−i

l∏
k=1

yjkσ
(jk)
z

)
(13)

where, in principle, the l qubits (j1, . . . , jl) can be arbi-
trarily chosen among the N available.

In Fig. 2 we explicitly show a 3-qubit example with
a full 2-qubit entangling map and an additional l = 3
operation. All multiple qubit operations are already
decomposed into a standard universal set made of
single-qubit rotations and CNOTs [48], which is typical
of superconducting quantum computing architectures.

Before moving to the description of the trainable part
of the QNN models, let us also remark a few points about
the classical preprocessing step W (see Fig. 1). As sug-
gested above, this classical manipulation is generally used
to enhance the nonlinear behaviour of the network, for
example by taking inverse trigonometric functions of the
original inputs [32]. At the same time, we can use this ini-
tial step to embed the relevant set of physical symmetries
into the abstract representation of the target molecular
systems seen by the QNN. This is known to be crucial
already for classical ML methods, where the role of sym-
metry preserving features is played, e.g., by the so called
symmetry functions [8, 10].

To limit the complexity of the quantum models, in the
following we will use a set of internal coordinates, namely
bond distances and angles, which by design respect trans-
lational and rotational symmetries. The integration of
more advanced techniques, including fragmentation of
large systems into local atomic environments, the use
of other classes of molecular fingerprints and, possibly,
the realization of symmetry adapted quantum circuits all
represent natural future extensions of the present work.

We explicitly notice that the conversion between

Cartesian and internal coordinates (~Iα = W (~Cα)) must
be taken into account when computing the quantum
forces predictions, as these are defined with respect to
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the former class (Eq. 1). As a result, Eqs. 5 and 6 are
more properly rewritten as

MSE(Energy) =
1

|A|
∑
α∈A

(
fΘ

(
W (~Cα)

)
− Eα

)2

(14)

and

MSE(Forces) =
1

3n · |A|
∑
α∈A

∑
c,ai

(
∇IfΘ(~Iα)· ∂W

∂cαai
−Fαai,c

)2

.

(15)

C. Trainable layers

The parametrized operations U`(~θ`) represent the ad-
justable components of the QNN model. If suitably opti-
mized during the learning phase, these select the most ap-
propriate mapping from inputs (molecular coordinates)
to outputs (energy and forces).

The precise structure of the U`(~θ`) can vary signif-
icantly across different models and applications, with
several popular choices known in the literature. For
our specific functional regression problem, we follow the
steps of Mitarai et al. [32] and make use of a physics-
inspired ansatz which is known to generate highly entan-
gled states. In particular, we consider the following fully
connected transverse field Ising Hamiltonian

H =

N∑
j=1

ajσ
(j)
y +

N∑
j=1

N∑
k=j

Jjkσ
(j)
z σ(k)

z , (16)

and we use the induced time evolution operator U(t) =
e−iHt as a template for the trainable layers. By using
the approximate product formula

e−itH ≈
N∏
j=1

e−itajσ
(j)
y ·

N∏
j=1

N∏
k=j

e−itJjkσ
(j)
z σ(k)

z (17)

and by replacing ajt and Jjkt with free parameters, we
obtain a unitary operation of the form

U`(~θ`) =

N∏
j=1

e−iθ
j
`σ

(j)
y ·

N∏
j=1

N∏
k=j

e−iθ
jk
` σ(j)

z σ(j)
z , (18)

where now ~θ` is the collection of all θj` and θjk` . It is easy

to see that U`(~θ`) can be implemented with single-qubit
Pauli-y rotations and two-qubit ZZ operations, similarly
to what happens for the encoding map Φ defined in the
previous section. We stress however that, while the en-
coding layers are identical across different reuploading
stages, as they repeatedly input the same classical data

~y, the trainable parameters ~θ` are allowed to vary across
different layers ` = 0, . . . , D.

For ` = 0, we make the special choice θjk` = 0 ∀j, k,
namely we only use single-qubit rotations at the begin-
ning of the computation (see Fig. 1). Moreover, we em-
pirically find that including generalized l-qubit interac-

tions up to l = 3, i.e. terms of the form e−iθjkmσ
(j)
z σ(k)

z σ(m)
z

improves the overall performances of the model at the
cost of only a modest increase of circuit complexity.

D. Model training

We train QNN models by minimising an average
quadratic error that in principle contains both energy
and forces labels, see Eq. (4). In most instances, we make
use of an update rule which follows the negative gradient
direction of the loss function

Θt+1 = Θt − η∇Lχ(A,Θt), (19)

where η is the learning rate and Θt the set of trainable
parameters at the optimization step t. For energy pre-
dictions derived from a quantum circuit, derivatives with
respect to any given trainable parameter µ can be easily
computed with the parameter shift rule [49]

∂EQNN
α

∂µ
=

1

2

[
fµ+π

2 ;Θµ(W (~Cα))− fµ−π2 ;Θµ(W (~Cα))
]
,

(20)

where EQNN
α = fΘ

(
W (~Cα)

)
and Θµ is the set of all

trainable parameters without µ. The corresponding re-
sult for the forces predictions is obtained with the itera-
tive shift rule [50], and schematically reads

∂Fα,QNN
ai,c

∂µ
= −∂

2EQNN
α

∂cai∂µ
= −1

4

∑
j

[
fµ+π

2 ;Θµ(~Iα +
π

2
~ej)

− fµ−π2 ;Θµ(~Iα +
π

2
~ej)− fµ+π

2 ;Θµ(~Iα −
π

2
~ej)

+ fµ−π2 ;Θµ(~Iα −
π

2
~ej)
]
·
∂Iαj
∂cai

,

(21)

with (~ej)k = δjk the standard basis vectors.

Notice that the parameter shift rule of Eq. (20) can also
be used to retrieve the actual QNN forces predictions,
namely

Fα,QNN
ai,c = −∇IfΘ(~Iα) · ∂W

∂cai
= −

∑
j

∂fΘ(~Iα)

∂Iαj

∂Iαj
∂cai

.

(22)
In this case, factors of the form ∂f/∂Ij must be computed
from the quantum circuit, while the chain rule factors
taking into account the classical preprocessing are known
analytically and are determined solely by the mapping
function W .

At the beginning of training, all free parameters are
initialized at zero, so that each hidden layer acts as the
identity operator. This essentially follows the recommen-
dations given in Ref. [51] to promote effective optimiza-
tion steps in the early training phase.
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=Φ(~y)

Ry(y1)

Ry(y2) Rz(y1 ∗ y2)

Ry(y3) Rz(y1 ∗ y3) Rz(y2 ∗ y3) Rz(y1 ∗ y2 ∗ y3)

Figure 2: Example of a full encoding map with up to order l = 3 interactions on N = 3 qubits.

E. Effective dimension

In the remaining part of this work, we will provide
a series of examples to demonstrate how QNN mod-
els are able to learn and give consistent predictions of
potential energy surfaces and force fields for individual
molecules. The overall performances will be assessed pri-
marily through the evaluation of the average root mean
square error on suitable test sets.

In addition to that, we will also make use of the con-
cept of effective model dimension – originally introduced
in Ref. [37] – to inform the comparison with classical
counterparts and to investigate potential advantages. As
a brief summary, the effective dimension quantifies the
capacity of both classical and quantum parametrized ma-
chine learning models [52] by measuring the portion of
model space that they occupy. In other words, it es-
timates the capability of a model in covering the func-
tional space defined by a particular model class by mak-
ing a productive use of all its parameters, going beyond
naive parameter-counting arguments. A high effective
dimension is therefore related to a richer set of express-
ible functions and better trainability, as it can lead to
a more favourable landscape for gradient based meth-
ods [37]. Moreover, the effective dimension can sensibly
bound the model generalization error [37, 52].

For a given statistical model y = fΘ(x), the effective
dimension is defined as

dn(fΘ) =

2 log ( 1
VΩ

∫
Ω

√
det
(

1 + n
2π lognF (Θ)

)
dΘ)

log ( n
2π logn )

(23)
where Ω ⊂ Rd is a d-dimensional parameter space of vol-
ume VΩ, n ∈ N is the number of data samples. Here, we
have also introduced the Fisher information matrix

F = E[∇Θ log (p(x, y; Θ)∇Θ log (p(x, y; Θ)
T

] (24)

≈ 1

K

K∑
k=1

∇ΘfΘ(xk)∇ΘfΘ(xk)T , (25)

with p(x, y; Θ) = p(y|x; Θ)p(x) and p(y|x; Θ) =

exp
(
−‖y − fΘ(x)‖2/2

)
/
√

2π being the probability dis-

tribution mass of the model. The effective dimension is
bounded by the rank of the Fisher information matrix

and is usually normalized with the total number of pa-
rameters d.

III. RESULTS

A. Diatomic molecule: LiH

As a first proof-of-concept, we consider a single LiH
molecule and we design a QNN model that learns its
dissociation curve, and the corresponding force field, as
a function of the bond length r.

The presence of a single internal coordinate, which
is obtained from the Cartesian positions of the Li and

H atoms with a mapping W (~C) = |~CLi − ~CH|, makes
the problem effectively one dimensional. We construct
a classical dataset by numerically diagonalizing the sec-
ond quantized Hamiltonian expressed in the STO3G ba-
sis set [39] for different bond lengths r in the range
[0.9, 4.5] Å. Forces are computed via finite differences over
the exact potential energy surface.

To make better use of the Fourier series structure of the
QNN, we make the exact potential energy surface sym-
metric by mirroring it around the r = 4.5 Å and selecting
the data set over the extended range, see Appendix A.
Furthermore, we use an additional preprocessing step –
on top of the Cartesian to internal coordinate transfor-
mation – to construct 3-dimensional features from the
original 1D problem. First, we scale all inputs in [−1, 1]
with the scikit-learn MinMaxScaler, then we apply
the map

W : [−1, 1]→ [−π, π]3

r 7→

 πr
arcsin (r)
arccos (r)

 (26)

We employ a 3-qubit QNN model with D = 10 train-
able layers, alternated with the same amount of input
stages. We use a full feature map, as introduced in
Sec. II B, with l = 3 (see also Fig. 2), and similar train-
able layers with full entanglement and degree l = 3 in-
teractions.

We benchmark our model against a fully connected
classical neural network (NN), taking the 7 inputs en-
coded in the feature map, as in Fig. 2. The classical
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LiH RMSE(E) RMSE(F) d50/d d Epochs
QNN 4 × 10−3 0.05 0.9 73 230
NN 8 × 10−3 0.6 0.38 73 1600

Table I: Validation RMSE for LiH energy ([eV]) and
forces ([eV/Å]), together with the normalized effective
dimension (d50/d), the total number of parameters (d)
and the number of training epochs for both the QNN

and the classical NN models.

NN is composed of 5 layers with [7, 4, 5, 2, 1] units using
the hyperbolic tangent activation function. Such network
topology is chosen through a random search over all pos-
sible configurations with the same number of parameters
(identical to the QNN), selecting the one that achieves
the best validation loss.

Both the classical and the quantum neural network
models are trained with 4000 steps of the ADAM [53] al-
gorithm on 50 data points using the L0 (χ = 0) loss. We
remark that the small size of the classical neural network
makes it quite sensitive to parameters initialization, even
when using the Xavier [54] scheme. Hence, the model un-
derfits in 65% of the cases and needs 1600 epochs to reach
convergence. On the other hand, the quantum neural
network appears to be robust against weights initializa-
tion and converges in 230 epochs.

The validation root mean square errors (RMSE) for
both models, computed on a test set with 120 data
points, are given in Table I and the respective predic-
tions are shown in Fig. 3. We notice that, in this setting,
the QNN outperforms the best classical counterpart with
the same number of parameters in terms of stability and
quality of the predictions, and also exhibits a larger effec-
tive dimension. Although the classical model can match
the QNN results in absolute terms when its size grows or
if the forces are explicitly included in the loss function
(χ 6= 0), the present comparison, supported by the effec-
tive dimension analysis, certifies the competitiveness of
the proposed quantum models. In Appendix B we also
report an example of MD trajectories driven by the exact
and learned force fields.

B. A single H2O molecule

In the second example, we move towards the multi-
dimensional case by considering an individual H2O
molecule. For this more challenging test, we choose 3
internal coordinates, namely the two O-H bond lengths
and the H-H planar angle, which we scale again in [−1, 1]
and preprocess to create the following 3-dimensional fea-
ture vector

W : [−1, 1]3 → [−π, π]3rOH,1

rOH,2

φHH

 7→
arcsin (rOH,1)

arcsin (rOH,2)
arcsin (φHH)

 (27)

(a) LiH Energy

(b) LiH Force

Figure 3: Prediction of the LiH energy (shifted by
−212.8 eV) (a) and force (b) as a function of the the

inter-atomic distance r. The exact solution (black line)
is compared with the QNN (red dots) and the classical
NN (green stars). Insets show an enlarged view of the

energy minimum region.

The classical configurations and the corresponding en-
ergy and forces labels, computed with density functional
theory (DFT), are retrieved from Ref. [55]. To simplify
the problem, we concentrate on configurations around the
equilibrium position, discarding those with bond length
outside [1.6, 2.1] Å.
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H2O RMSE(E) RMSE(F) d300/d d
QNN 0.005 0.06 0.72 87
NN 0.006 0.1 0.25 87

n2p2 7 × 10−4 0.01 0.04 1642

Table II: Validation RMSE for H2O energy ([eV]) and
forces ([eV/Å]), together with the normalized effective
dimension (d300/d) and the total number of parameters
(d) for the QNN and the classical NN and n2p2 models.

Our QNN model is constructed similarly to the LiH
case, with three qubits and a depth of D = 12 encod-
ing and trainable layers. We compare again its results
with those of a classical NN model with the same num-
ber of parameters and designed with the same conditions
applied in the LiH case presented above. Furthermore,
we also use as a reference the state-of-the-art specialized
n2p2 [56] classical package, which makes full use of sym-
metry functions and of the sub-network fragmentation
idea [8], and from which we expect peak performance.

More specifically, the simplified classical NN model is a
fully-connected 6-layer network with [7, 4, 6, 2, 2, 1] units
and hyperbolic tangent activation function. Instead, the
n2p2 network uses three sub-networks with two hidden
layers, each with 15 units, and hyperbolic tangent acti-
vation. This model takes as input a set of 15 symmetry
functions for the Oxygen atom and 20 for the two Hy-
drogen ones. The models are trained by minimising a L1

loss function on 300 data points (1000 for n2p2). No-
tice that here we set χ = 1: indeed, as pointed out in
Ref. [57], it is important to incorporate the forces in the
training if we wish to predict them accurately. However,
this makes a full gradient descent computationally very
intensive for the simulation of the quantum model, as
it requires the calculation of the circuit Hessian matrix
with recursive parameter shifts (see Eq. 21). For this
reason, we choose the gradient free optimizer COBYLA
for the present demonstration, while the classical models
are trained with the ADAM method.

The validation loss results (computed on a test set
with 650 data points) are presented in Table II, while
Fig. 4 shows the predicted energy and forces against the
reference data points. The QNN is once again competi-
tive with respect to classical counterparts, outperforming
the non-specialized classical NN and reporting the largest
normalized effective dimension.

C. Umbrella motion of Hydronium

In our last test, we consider a single Hydronium
(H3O+) molecule. Following Ref. [58], we prepare a
training set by sampling configurations traversed along
the inversion pathway shown in Fig. 5 using DFT-based
Molecular Dynamics (MD) simulations at 400 K and col-
lecting the corresponding energies and forces. In order to
sample the full profile along the dihedral angle ‘HHHO’

(a) H2O Energy

(b) H2O Forces

Figure 4: Predicted H2O energy (a) and forces (b) from
the the QNN (red crosses), the generic NN (green

crosses) and the n2p2 (blue crosses) models compared
to reference DFT data points (black line).

from -0.78 to 0.78 rad, we also applied a dynamical con-
straint with increments of 0.005 rad at each MD time
step. All calculations were performed with the plane-
wave (PW) code CPMD [59] using unrestricted Kohn-
Sham DFT with the PBE functional [60], a PW cutoff of
70 Ry, a cubic simulation box of edge 14 Å, and Trouiller-
Martins pseudo-potentials [61]. For the MD, a time step
10 a.u. (0.242 fs) was used.
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H3O
+ RMSE(E) RMSE(F) d500/d d

QNN 3.7×10−3 0.26 0.67 135
NN 4.2×10−3 0.207 0.19 135

N2P2 5×10−4 0.19 0.03 2214

Table III: Validation RMSE for H3O+ energy ([eV]) and
forces ([eV/Å]), together with the normalized effective
dimension (d500/d) and the total number of parameters
(d) for the QNN and the classical NN and n2p2 models.

We describe each configuration with 6 internal degrees
of freedom, namely three O-H bond lengths, two O-H an-
gles and the dihedral angle formed by the four atoms (see
Appendix C for the formal definitions). We also make
use of the explicit formulas for derivatives with respect
to Cartesian coordinates provided in Ref. [62].

A 6-qubit QNN model is constructed with D = 10
repetitions of the encoding map and the trainable layers,
both with linear entanglement and order l = 3 interac-
tions. The latter are also placed with linear couplings
across all neighbouring 3-qubit groups. Due to the com-
plexity of the system and the high computational cost,
we only include energy labels in the training set, leaving a
more refined study of the forces for future investigations.
Hence, we train the model by minimizing a L0 loss on
500 data points (9000 for n2p2) with 5000 steps of the
ADAM algorithm.

As in the previous examples, we compare the QNN
model with a classical neural network, whose topology is
optimized under the constraint that the number of train-
able parameters be the same of the QNN, and with a
n2p2-build model. In this case, the classical NN has [6,
14, 2, 1] units, while the n2p2 neural network is composed
of 4 sub-networks, each one with a structure similar to
the case if the H2O molecule in Sec. III B.

The RMSE results for a test set with 500 data points
are reported in Tab. III, and energy predictions are also
depicted in Fig. 5. Here, the QNN model is still compet-
itive with respect to the generic classical NN, although
both of then are clearly outperformed by the specialized
and much larger n2p2 model. It is also worth noticing
that forces predictions are much worse than energy ones,
which confirms the necessity of including them in the loss
function to achieve good results in non-trivial systems.

IV. CONCLUSIONS

In this work we have successfully demonstrated the sys-
tematic application of quantum machine learning tech-
niques, and specifically parametrized quantum neural
networks, to the problem of learning molecular poten-
tial energy surfaces from classical ab initio data sets and
for the generation of molecular force fields. In all our nu-
merical simulations, the proposed QNN models already
achieved competitive performances with respect to com-
parable classical ones, reporting good prediction accu-

(a) H3O Energy

(b) H3O Energy

Figure 5: Predicted H3O+ energy (shifted by -474.45
[eV]) from the QNN (red), the generic classica NN

(green) and the n2p2 (blue) models as a function of the
dihedral angle (a) and compared to the reference DFT

energy (b). The molecule is represented at the two
energy minima where the Oxygen atom sits above or
below the plane formed by the Hydrogen ones, and at

the saddle point where the Oxygen and Hydrogen
atoms are co-planar.

racy for several paradigmatic single-molecule examples.

The present assessment naturally opens several ques-
tions and future research directions. On the one hand,
the design of more specialized QNN architectures and
molecular descriptors would allow a more refined and
effective treatment of the problem, including the pos-
sibility of tackling bulk materials. For example, classi-
cal state-of-the-art implementations [56] crucially bene-
fit from the fragmentation of large systems in local en-
vironments and corresponding sub-networks [8]. Simi-
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lar techniques could possibly be engineered for QNNs,
e.g. by resorting to more general perceptron-based mod-
els [28, 29]. These could explicitly be partitioned into
local components and entangling connections between
different sub-networks could eventually be realized. In
addition to that, the development of efficient quantum
gradient estimation protocols will be crucial for larger
scale implementations of the proposed methods and for
an adequate treatment of forces. It is also worth men-
tioning that another viable alternative may represented
by quantum kernel methods [47], whose classical coun-
terparts are already extensively used in the context of
machine learning potentials [9], for example in combina-
tion with Coulomb matrix descriptors [11].

On the other hand, the most interesting open ques-
tions concern the potential quantum advantages brought
by QML approaches. In this work, we focused on the
problem of learning from classical data and we observed,
following Ref. [37], that suitably designed QNN models
exhibit a larger effective dimension than their classical
equivalents. This in turn relates to stable and fast train-
ing capabilities, and points toward a more effective han-
dling of larger systems. Indeed, large normalized effective
dimensions signal, in the spirit of capacity measures, an
effective use of the available model parameters, thus sug-
gesting that quantum models could represent economic
and manageable tools to tackle large molecular simula-
tions.

At the same time, this analysis does not yet take into
account the role of overparametrization, which is known
to contribute in a crucial way to the performances of
classical neural networks. In fact, our numerical ex-
periments confirm that large classical models, such as
the ones employed in Sec. III B-III C, still achieve the
best prediction and generalization accuracy. Interest-
ingly, while the normalized effective dimension of those
classical models is quite small, the absolute effective di-
mension is actually comparable to the one of their di-

rect quantum counterpart, thus hinting at some form of
‘computational phase transition’ in their behaviour [63–
65]. A few similar observations have already been made
for quantum machine learning models [65], and a thor-
ough exploration of QNNs capabilities in such highly
overparametrized regime – including, among others, the
question of whether this could be realized in a more ef-
fective way or with different qualitative behaviours com-
pared to classical models – represents an interesting open
research direction in general. We leave a complete anal-
ysis of its application in the context of NNPs for future
investigations.

On a larger perspective, one may also envisage the use
of QML methods on quantum data [20, 27] retrieved from
experiments or quantum chemistry simulations, e.g., in
the form of quantum wavefunctions generated through
variational [39, 66] or dynamical methods. The extrac-
tion of physical/chemical properties and the classification
of materials directly at the quantum level of description
could then likely represent one of the most advanced and
exploratory efforts in the quest for quantum advantage
with quantum machine learning.
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Mod. Phys. 91, 045002 (2019).

[7] D. Pfau, J. S. Spencer, A. G. D. G. Matthews, and
W. M. C. Foulkes, Phys. Rev. Research 2, 033429 (2020).

[8] J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401

(2007).
[9] J. Behler, The Journal of Chemical Physics 145, 170901

(2016).
[10] J. Behler, The Journal of Chemical Physics 134, 074106

(2011).
[11] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von

Lilienfeld, Phys. Rev. Lett. 108, 058301 (2012).
[12] T. Morawietz, A. Singraber, C. Dellago, and J. Behler,

Proceedings of the National Academy of Sciences 113,
8368 (2016).

[13] M. Gastegger, L. Schwiedrzik, M. Bittermann,
F. Berzsenyi, and P. Marquetand, The Journal of
Chemical Physics 148, 241709 (2018).

[14] G. Imbalzano, A. Anelli, D. Giofré, S. Klees, J. Behler,
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Appendix A: LiH – Mirroring

As we recalled in the main text, quantum neural net-
work models introduced in Eq. 2 can be expressed as
partial Fourier Series [42]

fΘ(x) =
∑
n∈Ω

cne
inx, (A1)

where Ω is the set of available frequencies and depends
exclusively on the encoding map, while the coefficients
cn are determined by the trainable unitary gates and the
observable. QNNs of this form become universal func-
tional approximators in the limit |Ω| → ∞. In practice,
we make use of the Fourier series interpretation of QNNs
and of Fourier analysis to guide model design, for exam-
ple by changing model complexity (in our case essentially
determined by the depth D for fixed qubit number) to
control the number of available frequencies.

In simple proof-of-principle experiments, such as LiH,
we can also compare the model spectrum with the one of
the data, although this is may not be possible in general.
We also empirically find that better performances are ob-
tained for periodic data sets, which intuitively correspond
to finite frequencies spectra and hence reduce spurious
oscillations in the final solution. We apply this intuition
to the the 1-dimensional LiH case, whose PES can be ar-
tificially made periodic by mirroring around r = 2.5 Å,
as shown in Fig. 6.

(a) Time evolution of the inter-atomic distance

(b) Oscillation frequencies

Figure 7: Molecular dynamics of a LiH molecule with
initial conditions x0 = 1.05 [Å] and v0 = 0 [at.u.]. The
exact solution (blue) is compared to the classical NNP

(green) and to the quantum NNP (red) ones.

Appendix B: LiH – Molecular Dynamics

The motivation behind both quantum and classical
neural network potentials is ultimately to provide compu-
tationally effective access to highly accurate force fields
to drive molecular dynamics. In this section, we provide
a first demonstration of a quantum NNP used to simulate
the oscillations of a LiH molecule around its equilibrium
position. We use the Velocity Verlet algorithm [67] to
compute the time evolution of inter-atomic distance and
velocity, starting from some given initial conditions. At
each point, the forces are predicted with the trained QNN
presented in Sec. III A. For comparison, we also present
results obtained with the classical NNP introduced in
Sec. III A of the main text.

We start with the atoms at rest and close to each other,

http://arxiv.org/abs/1912.02292
http://arxiv.org/abs/2109.11676
http://dx.doi.org/ 10.1103/RevModPhys.92.015003
http://dx.doi.org/10.1103/PhysRev.159.98
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with an initial inter-atomic distance of 1.05 Å, and let the
system evolve according to Netwon’s equations. The time
evolution of the inter-atomic distance is shown in Fig. 7a,
where we compare the results obtained with classical and
quantum NNPs to the exact solution obtained numeri-
cally. To assess the overall quality of the trajectories, we
compute the frequency spectrum of the oscillations with
a Fourier transform, which we apply to an evolution of
0.6 fs, repeated 1000 times and passed through an Ham-
ming window. As reported in Fig. 7b, the quantum and
classical models can accurately reproduce the dominant
frequencies.

Appendix C: H3O
+ – Internal coordinates

A hydronium molecule has 6 = 4 × 3 − 6 degrees of
freedom. To describe its configurations, we used 3 bond

lengths (rOH,1, rOH,2 and rOH,3), 2 angles (φH,1OH,2 and
φH,1OH,3) and 1 dihedral angle (dOH,3H,2H,1). We used
the following definition for the dihedral angle with atoms
(ijkl):

dijkl = sign(χ) arccos
(~rij × ~rkj) · (~rkj × ~rkl)
|~rij × ~rkj | · |~rkj × ~rkl|

(C1)

χ = ~rkj · (~rij × ~rkj)× (~rkj × ~rkl), (C2)

where ~rij is the distance vector between atom i and j.
The above definitions and the formulas for their gradients
can be found in Ref. [62].
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