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Generative modeling is a promising task for near-term quantum devices, which can use the stochas-
tic nature of quantum measurements as random source. So called Born machines are purely quantum
models and promise to generate probability distributions in a quantum way, inaccessible to classi-
cal computers. This paper presents an application of Born machines to Monte Carlo simulations
and extends their reach to multivariate and conditional distributions. Models are run on (noisy)
simulators and IBM Quantum superconducting quantum hardware.

More specifically, Born machines are used to generate muonic force carriers (MFC) events resulting
from scattering processes between muons and the detector material in high-energy-physics colliders
experiments. MFCs are bosons appearing in beyond the standard model theoretical frameworks,
which are candidates for dark matter. Empirical evidences suggest that Born machines can reproduce
the underlying distribution of datasets coming from Monte Carlo simulations, and are competitive
with classical machine learning-based generative models of similar complexity.

I. INTRODUCTION

Quantum computers have the potential to solve prob-
lems that are difficult for classical computers, such as
factoring [1] or simulation of quantum systems [2]. How-
ever, the unavailability of error-correcting codes and lim-
ited qubit connectivity prevents them from being used.
Nevertheless, noisy-intermediate-scale-quantum (NISQ)
[3] devices, characterized by their low number of noisy
qubits and short decoherence time, have already been
successfully proven in domains such as machine learning
[4–13] or quantum chemistry [14–16].

The present manuscript focuses on generative model-
ing in quantum machine learning (QML), which is the
task of learning the underlying probability distribution
π(y) of a given dataset and generating samples from it.
In the classical regime, generative models are often ex-
pressed as neural networks. For instance, generative ad-
versarial networks (GAN) [17] and variational autoen-
coder [18] have been successfully applied in a variety of
fields, ranging from computer vision [19] to natural sci-
ences [20]. In High Energy Physics (HEP), generative
models have been proposed as an alternative to Monte
Carlo (MC) simulations, e.g., to simulate detectors [21–
23] and very recently as a method to load distributions
of elementary particle-physics processes [24]. MC calcu-
lations in HEP, such as Geant4 [25] or MadGraph [26]
are usually expensive in time and CPU resources [27].
Generative models provide a solution, e.g., by augment-
ing small MC datasets or inter/extrapolating to different
regimes.

The probabilistic nature of quantum mechanics al-
lows us to define a new class of generative models:
quantum circuit Born machine (QCBM). These models
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use the stochastic nature of quantum measurement as
random-like sources and have no classical analog. More
specifically, they produce samples from the underlying
distribution of a pure quantum state by measuring a
parametrized quantum circuit [28] with probability given
by the Born rule pθ(x) = | 〈x|ψ(θ)〉 |2. Born machines
have been proposed as Bayesian models [13], using an
adversarial training strategy [11, 29], optimal transport
[12] and adapted to continuous data [30, 31]. Quantum
neural networks using a Gaussian noise source [32], or
quantum Boltzmann machines [33] are both viable al-
ternatives for quantum generative modeling but will not
be addressed in the present manuscript. Quantum gen-
erative models also have the ability to load probability
distribution on a quantum computer [11], which can then
be used to integrate elementary processes via quantum
amplitude estimation [24] or for finance applications [34].

Here, an extension to multivariate and conditional
probability distributions is proposed, exploring limita-
tions of NISQ devices. Even if generating multivari-
ate distributions with Born machines has already been
explored by Zhu et al. [35], we propose an alternative
circuit design with a reduced connectivity, better suited
for NISQ devices. Noteworthy, conditional distributions
have never been explored in this context, and this work
is thus a first step in that direction. Experiments were
conducted on (noisy) simulators and superconducting de-
vices from IBM Quantum using qiskit runtime, the
recent serverless architecture framework which handles
classical and quantum computations simultaneously on
a dedicated cloud instance. Noisy simulators incorpo-
rate gates and readout errors, approaching real device
performances. However, their behavior can be genuinely
different from noisy simulators. Hence, this work em-
phasizes the use of real quantum hardware and address
related challenges.

This paper is organised as follows. Section II intro-
duces the physical use case of muonic force carriers and
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the preprocessing of the dataset. The models are intro-
duced in Sec. III. More specifically, Sec. III A introduces
the quantum circuit Born machine and Sec. III B and
III C the multivariate and conditional versions, respec-
tively. Results are shown in Sec. V for all models on
(noisy) simulators and real quantum hardware.

II. MUONIC FORCE CARRIERS

A. Physical Setting

Muon force carriers (MFC) are theorized particles that
could be constituents of dark matter and explain some
anomalies in the measurement of the proton radius and
the muon’s magnetic dipole, making them exciting can-
didates for new physics searches.

Following Galon et al. [36], we consider a muon fixed-
target scattering experiment between muons produced at
the high-energy collisions of the LHC and the detector
material of the ForwArd Search ExpeRiment (FASER)
or the ATLAS calorimeter. In the ATLAS case [36], in-
dependent muon measurements performed by the inner
detector and muon system can help observe new force
carriers coupled to muons, which are usually not de-
tected. In the FASER experiment, the high resolution of
the tungsten/emulsion detector is used to measure muons
trajectories and energies.

B. Dataset

The dataset, produced with MadGraph simulations
[26], is composed of samples with the following variables:
the energy (E), transversal momentum (pt) and pseudo-
rapidity (η) of the outgoing muon and MFC, conditioned
on the energy of the incoming muon. The data is made
more Gaussian-shaped by being preprocessed in the fol-
lowing way: the energy is divided by the mean of the
incoming energy, the transverse momentum is elevated
to the power of 0.1 [37], and everything is standardized
to zero mean and unit variance. The dataset is composed
of 10240 distinct events, and it is splitted into a training
and testing set of equal size.

III. MODELS

A. Quantum Circuit Born Machine

A Born machine represents a probability distribution
as a quantum pure state and can generate samples via
projective measurements. The Born machine outputs bi-
nary strings, which can be interpreted as a sample from
the generated discrete probability distribution. Similar
to a classification task, the target distribution is dis-
cretized into 2N bins, which are associated to the differ-
ent binary strings of size N . The quantum state can take

Figure 1: Ansatz constructed with RY(θ) and RX(θ)
single-qubit rotation and CNOT interactions with a

linear connectivity.

the form of a quantum circuit [13] or a tensor network

[38], acting on some initial state, e.g. |0〉⊗N . Following
the former approach, this manuscript considers quantum
circuit Born machines (QCBM), where the quantum cir-
cuit is constructed, for convenience, using repetition of
basic layers U(θ). These building blocks are chosen to
be the time evolution of an Ising Hamiltonian, which is
conjectured to be difficult to simulate classically [6, 12].
On the other hand, U(θ) can be written in a hardware-
friendly fashion for NISQ superconducting circuits de-
vices, using the Baker-Campbell-Hausdorff formula. An
example, constructed with RY(θ) = exp(−iθσy/2) and
RX(θ) = exp(−iθσx/2) single-qubit rotations and CNOT
interaction between two qubits with linear connectivity
is shown in Figure 1. A RY(θ) rotation is always added
before the measurements.

B. Correlated Features

A simple way to extend the above-defined QCBM to
generate correlated features is to use different registers
for each of them, as proposed in Ref. [35]. In this sce-
nario, a global unitary C entangles the registers while a
local operator U(θ) learns the individual distributions, as
shown in Figure 2. Zhu et al. [35] propose to use a GHZ
state

|GHZ〉 =
|0〉⊗2n

+ |1〉⊗2n

√
2

, (1)

which is a generalization of a Bell state on N = 2n qubits.
However, our investigations empirically suggest that the
long-range interactions do not bring clear benefits and
are expensive to be implemented on NISQ devices. More-
over, in this case using a GHZ state led to circuits ex-
ceeding the coherence time of the device, resulting in uni-
form distributions coming from maximally mixed states.
Empirical evidence from this work suggests that a train-
able C easily leads to the appearance of the well-known
barrens plateaus phenomena [39]. These reasons suggest
the use for more hardware-friendly alternatives which are
better suited for NISQ devices. Therefore, a fixed state
is constructed only on the first qubits of each pair of reg-
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Figure 2: QCBM for a multivariate probability
distribution. The fixed C gates create entanglement
between the registers while the trainable U(θ) gates

learn the distributions.

Figure 3: Correlation gates C between two quantum
registers qA and qB, with n qubits each.

isters of size n. We choose

|C〉 =

[
(|0〉+ |1〉)√

2
⊗ |0〉⊗n−1

]⊗2

. (2)

Only a linear connectivity is considered between the reg-
isters. The circuit to construct this state is shown in
Figure 3.

It is possible, by using the U(θ) from Figure 1, to map
the multivariate Born machine, from Figure 2, to an IBM
Quantum chip without using any swap gates. This is due
to the linear connectivity of all the components and the T
topology of the device. Figure 4 shows a possible way to
do so onto a 27 qubits architecture, using three registers
(qA in red, qB in blue, and qC in green) with n = 3
qubits each. The elimination of swap gates diminishes
the amounts of errors made on the quantum devices, by
reducing the number of double-qubit gates and depth.

C. Conditional Born Machine

Conditional generative models, such as conditional
generative adversarial networks (C-GAN) [40] produce
samples x according to some conditions y. This task is
more challenging since p(x|y) has to be captured, instead
of only p(x). Conditional generative models may be able
to reduce over-fitting by sharing weights across differ-
ent value of the conditioning variable y. The flexibility
of conditional generative models compared to MC sim-
ulations is advantageous in terms of computational and
time resources needed to generate complex events. For

Figure 4: Mapping of the multidimensional QCBM onto
a 27 qubits IBM quantum chip. The different colors

refer to different registers and the ordering follows the
convention of Qiskit.

Figure 5: Conditional Born machine. The data
dependant block (blue) acts as a feature map while the

trainable gates (red) learn the distribution.

instance, in the MC simulations used in this work, the
initial energy has to be fixed, while left as a variable in
ML-based techniques. Hence, a conditional model could
interpolate or extrapolate, reducing the time consump-
tion needed for MC simulations.

The condition y in MFC events is the energy Ein of
the incoming muon. Different experimental values for
Ein are considered, which ranges from 50 GeV to 200
GeV in steps of 25 GeV. The conditional QCBM tries
to generate the correct distributions when been given ac-
cess to the incoming muon’s energy. In practice, Ein

is first scaled between [0,1], transformed with the func-
tion arcsine, as used in [7], and then encoded into the
QCBM via repeated RY(Ein) rotations on all qubits, as
shown in Figure 5. Overall, the model consists of a fea-
ture map that encodes the data and trainable gates that
learn the probability distribution. More complex feature
maps [10], or data re-uploading [41] strategies were used,
but did not show any improvement.
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IV. TRAINING STRATEGY

A. Optimization

The QCBM is trained using a two-samples test, with
a Gaussian kernel

K(x, y) = exp(− (x− y)2

2σ
), (3)

by comparing the distance between two samples x and
y in the kernel feature space. Concretely, the maximum
mean discrepancy (MMD) [42] loss function

L = E[K(x, y)]
x∼pθ,y∼pθ

− 2E[K(x, y)]
x∼pθ,y∼π

+ E[K(x, y)]
x∼π,y∼π

(4)

is used, with bandwidth

σ ∈ [0.01, 0.1, 1, 10, 100]. (5)

In this way, the difference of all the moments between the
target and model probability distribution are efficiently
compared at different scales. Advantages of the MMD
include its metric properties and the training stability it
provides, making it a suitable option in the NISQ era.

The gradient can be computed [13] using the shift rule
[43], as

∂L
∂θi

= E[K(x, y)]
x∼pθ+ ,y∼pθ

− E[K(x, y)]
x∼pθ− ,y∼pθ

− E[K(x, y)]
x∼pθ+ ,y∼π

+ E[K(x, y)]
x∼pθ− ,y∼π

, (6)

where pθ± are QCBMs with parameters θ± = θ±π/2 · êi
with êi the ith unit basis vector in parameters space, i.e.
(êi)j = δij .

Alternatively, the Simultaneous Perturbation Stochas-
tic Approximation (SPSA) [44] algorithm is also con-
sidered to optimize the QCBM in a gradient-free fash-
ion. SPSA efficiently approximates the gradient with two
sampling steps by perturbing the parameters in all direc-
tions simultaneously. While the convergence is slower
than using the exact gradient, fewer circuit evaluations
are needed for each epoch. Moreover, the stochastic na-
ture of SPSA makes it more resilient to hardware and sta-
tistical noise. We found on simulations that the gradient-
based algorithm outperforms SPSA, as SPSA sometimes
gets trapped in local minima. However the gradient-
based algorithm is more resource intensive than SPSA,
and in this regime SPSA is preferred as it is better suited
for quantum hardware.

Therefore, a mixed training scheme is used, where the
models are first trained on (noisy) simulators using the
ADAM optimizer [45], and then fine-tuned for a few
epochs on quantum hardware using SPSA. A readout er-
ror mitigation scheme [46] is used on the measurements.
Details about the implementation, training and resources
can be found in Appendix A.

B. Classical Baseline

Classical generative models trained using the MMD
loss function (GMMD models) [47, 48] are used as a base-
line. They are trained on continuous data since the per-
formance is usually higher than for discrete samples. The
impact of the classical models’ complexity is investigated
by comparing QCBMs with a classical model of approxi-
mately the same size and GMMD models which have two
orders of magnitude more parameters than the aforemen-
tioned QCBMs. Since currently available quantum hard-
ware are unable to accommodate large scale versions of
the proposed algorithms, we are forced to perform proof
of concept experiments. The goal of the classical base-
line, at this stage, is to give an indication of the current
level of deployability of quantum machine learning mod-
els and not to predict quantum advantage.

V. RESULTS

A. One Dimensional Distribution

As a first demonstration, the QCBM is trained on a
one-dimensional distribution: the energy of the outgo-
ing muon discretized on 24 = 16 bins. The QCBM is
built with one repetition of RY(θ), RX(θ), and RZZ(θ) =
exp(−iθσz ⊗ σz) gates using a full entanglement scheme.
Empirical evidence suggests that this circuit is better
suited to this task than the one proposed in Figure 1.
The small number of two qubits gates enables the use
of real quantum hardware without severe complications
due to the noise. Results obtained with an ideal simu-
lator, noisy simulator, superconducting circuits (ibmq -
montreal) and classical GMMD are shown in Figure 6.
The histograms display the number of generated events
and the ratios with the dataset as a function of energy
(GeV), with error bars corresponding to one standard
deviation from ten sampling processes. The GMMD is
chosen to be a neural network with 4 hidden layers of
size [64, 128, 64, 16], each with a sigmoid activation func-
tion, and a latent space of dimension 15.

The total variance (TV) ∈ [0, 1] with sample set Ω

TV(p, π) =
1

2

∑
x∈Ω

|p(x)− π(x)| (7)

is used as a comparison metric and results are shown in
Table I.
The QCBM is competitive with the GMMD of higher

complexity and superior in the under-parameterized
regime, as outlined by the results of the easy GMMD.
The noise does not negatively contribute to the perfor-
mance, as emphasized by the noisy simulations and quan-
tum hardware results.
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Figure 6: Outgoing muon’s energy at 50 GeV.
Comparison of QCBMs run on perfect simulator

(dashed cyan), noisy simulator (orange), ibmq montreal
(dashed pink) with the classical GMMD (blue).

backend TV
simulator 0.055

noisy simulator 0.043
ibmq montreal 0.074

GMMD 0.028
easy GMMD 0.290

Table I: Total variance for the one dimensional
distribution on different backends.

B. Multivariate Distribution

As a next step, we consider a multivariate distribution,
namely the energy, transverse momentum, and pseudo-
rapidity of the outgoing muon with incoming energy of
125 GeV, using 23 = 8 bins. The QCBM is designed with
five repetitions of entangling C and local U(θ) layers, as
seen in Figure 2. The former creates an entangling state,
while the latter consists of RY(θ) and CNOT interaction
with linear connectivity. The results for the simulator,

backend TV(E) TV(pt) TV(η)
simulator 0.055 0.05 0.052

noisy simulator 0.075 0.12 0.06
ibmq mumbai 0.078 0.097 0.13

GMMD 0.036 0.017 0.063
easy GMMD 0.360 0.040 0.110

Table II: Total variance for the individual multivariate
distributions on different backends.

noisy simulator, ibmq mumbai, and GMMD are shown
in Figure 7 and the total variance for the individual dis-
tributions are presented in Table II. The GMMD is con-
structed similarly as above but with three hidden layers
of size [128, 256, 128]. Even if the GMMD achieves the
best accuracy, the QCBM is still competitive despite its
small number of learned parameters or the presence of
noise.

An important factor for the performance of genera-
tive models is their ability to learn the correlations be-
tween the variables, which is not reflected in the total
variance. To this point, the correlations in the target
datasets are compared to those in the generated datasets.
Figure 8 shows the difference between the correlation ma-
trices calculated for the classical GMMD, (noisy) quan-
tum simulators, and the quantum backend ibmq mum-
bai. The correlation matrices are computed with the
Pearson product-moment methods

Rij =
Cij√
Cii · Cjj

, (8)

where C is the covariance matrix.

We observe that the QCBMs trained on the different
backends can reproduce the correlations, even if the clas-
sical GMMD is better.

C. Conditional Distribution

Finally, the conditioning on the initial muon’s energy is
encoded into the QCBM via parametrized-rotations. The
QCBM as outlined in Figure 5 contains four repetitions
of U(θ) while the GMMD has 2 hidden layers of size [8, 8].
The training is performed on the whole dataset except at
125 GeV, which is left to test the interpolation capabili-
ties of the models. Results are shown in Figure 9, and the
values of the total variance are reported in Table III. All
models achieve good performance for the interpolation.
The results on the quantum hardware could be slightly
improved for some histogram binned values. However,
the performance is similar on training and testing energy
bins, suggesting that the QCBM is able to interpolate
yet suffers from the noise.
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(a) Energy (b) Transverse momentum (c) pseudorapidity

Figure 7: Outgoing muon’s energy (left), transverse momentum (middle) and pseudorapidity (right) at 125 GeV,
generated by the multidimensional QCBM on a perfect simulator (cyan), noisy simulator (orange) and

ibmq mumbai (dashed pink) compared to a classical GMMD (dashed blue).

backend TV(100) TV(150) TV(125)
simulator 0.033 0.016 0.033

noisy simulator 0.067 0.046 0.035
ibmq mumbai 0.15 0.13 0.094

GMMD 0.016 0.032 0.034

Table III: Total variance for the conditional distribution
on different backends.

VI. DISCUSSION

The results presented in the above section suggest that
QCBMs are competitive with GMMD models with a
larger number of parameters. For instance, the ratio
between the number of parameters of the two models
is approximately 1:600 in the one dimensional case, and
1:1000 in the multivariate case. Only in the conditional
case is the complexity comparable. These results indicate
that GMMD models need more parameters than QCBMs
for similar performance. Indeed, reducing the complexity
to the level of the QCBM was subject to heavy underfit-
ting, as outlined by the performance of the easy GMMDs.
This suggests that QCBMs are more expressive than clas-
sical models, as outlined by Abbas et al. [49], and out-
perform them in the under-parametrized regime, point-
ing towards a quantum advantage in terms of model’s
complexity and performance for large scale QCBMs.

Moreover, the presence of noise does not seem to be an
obstacle in training of QCBMs. It is noteworthy that the

results obtained on quantum hardware are close to the
one obtained on the simulator, which suggests a sufficient
device quality for this task and an ability to deal with
incoherent noise. The hardware results are slightly worse
in the conditional case which can be explained by the
reduced number of epochs performed on the quantum
hardware. In fact, the loop over the training energy bins
increases the resources needed for one epoch, and thus
reduces the number of epochs performed.

These observations suggest that the noise is assimilated
during the training, underlining the importance of using
actual quantum hardware. This supports the findings of
Borras et al. [50], which empirically found that quantum
generative adversarial networks can be efficiently trained
on quantum hardware if the readout noise is smaller than
0.1. Thus, QCBMs seem to be an appealing application
for NISQ devices.

Barren plateaus (BP) are large portions of the train-
ing landscape where the loss function’s gradient variance
vanishes. As shown in [39], BP appear exponentially fast
in the depth and number of qubits for generic quantum
circuits, which makes the training of large-scale quan-
tum variational algorithms generally difficult. Solutions
to this issue, such as quantum convolutional neural net-
works [9] or local loss functions [51] are not applicable in
this case since the measurements on all qubits are needed.

The circuits used in this work are shallow enough to
avoid this effect. Nevertheless, difficulties are observed
during the training on hardware and noisy simulators,
which could be an effect of noise-induced BP [52]. A
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(a) Classical (b) Simulator

(c) Noisy simulator (d) ibmq mumbai

Figure 8: Difference of the correlation matrix from the dataset and the samples generated by the classical GMMD
model (top left), perfect simulator (top right), noisy simulator (bottom left) and ibmq mumbai (bottom right). The

labels (0,1,2) refer to the energy (E), transverse momentum (pt), and pseudorapidity (η), respectively.

more significant number of epochs were needed to miti-
gate this effect. Increasing the number of qubits to five
or six, for the one-dimensional case, deteriorates the ra-
tio between the generated and target samples for each
bins, even if the loss function converged after a hundred
of epochs. The same problem appeared when increasing
the number of features in the multivariate case or mix-
ing multiple features with the conditioning. Since the
gradient never vanished at the beginning of the training,
BP are probably not be the most critical issue, on the
other hand the MMD may not be the most suitable loss
function for large-scale QCBMs.

Alternative training strategies have been proposed in
[11, 12], with optimal transport and an adversarial train-
ing strategy, respectively. Hence, empirical evidences
suggest that the strong theoretical properties of the

MMD loss function are not met in practice, as outlined by
some benchmarks [53]. Hence the performance of GMMD
and GAN are similar for simple problems but the latter
is superior for complex tasks. Li et al. [54] propose an
adversarial strategy to optimize the kernel as an efficient
way to improve the performance of GMMD models.

VII. CONCLUSION

The present manuscript presents the application and
further development of a quantum circuit Born machine
to generate Monte Carlo events in HEP, specifically muon
force carriers. An efficient way to generate multivari-
ate distributions, requiring only linear connectivity and
thus suitable for NISQ devices, is proposed. Addition-



8

(a) 100 GeV (training) (b) 150 GeV (training) (c) 125 GeV (testing)

Figure 9: Outgoing muon’s energy with an initial energy of 100 GeV (left), 150 GeV (middle), and 125 GeV (right)
generated by the QCBM on a perfect simulator (cyan), noisy simulator (orange) and IBMQ Mumbai (dashed pink)
compared to a classical GMMD (dashed blue). The models are tested on samples with an energy of 125 GeV while

they are trained on samples with the remaining energies.

ally, the present paper is a first step towards generating
conditional probability distributions with quantum cir-
cuit Born machines. Numerical evidence demonstrates
that QCBMs can efficiently generate joint and condi-
tional distributions and that they are competitive against
classical neural networks of similar complexity. More-
over, the experiments are run successfully on quantum
hardware, finding that QML algorithms can mitigate the
effect of the noise during the training. Quantum gen-
erative models are consequently appealing for NISQ de-
vices since they can manage noisy qubits without the
need of expensive error mitigation techniques. QCBMs
also have the advantage of needing two or three orders of
magnitude less parameters while still being competitive.
This emphasizes the importance of developing large scale
QCBMs for potential quantum advantage.

While having strong potential in generative modeling,
QCBMs still need improvement to handle a more refined
binning and multivariate distribution of higher dimen-

sions. Additionally, it would be interesting to consider
conditional multivariate distribution, which will be the
focus of future work.
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[10] V. Havĺıček, A. D. Córcoles, K. Temme, A. W. Harrow,
A. Kandala, J. M. Chow, and J. M. Gambetta, “Super-
vised learning with quantum-enhanced feature spaces,”
Nature 567, 209–212 (2019).
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Eĺıas F. Combarro, and Ross Duncan, “Dual-
parameterized quantum circuit gan model in high
energy physics,” EPJ Web Conf. 251 (2021),
https://doi.org/10.1051/epjconf/202125103050.
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Appendix A: Implementation

The noiseless simulations are performed with
PennyLane [55] powered by JAX [56], which enables
an efficient gradient computation via vectorization and
just-in-time compilation. The noisy simulations are per-
formed using a fake backend tuned into the real quantum
hardware, provided by Qiskit [57]. For instance, we
used the noisy simulator tuned to ibmq mumbai with a
CNOT error rate of 0.085 and a readout error of 0.029 on
average. The training is performed in batches composed
of 512 events each, and one epoch is composed of ten
batches. The learning rate is initially set to 0.01 and is
halved every 20 epochs.

The resources needed to produce the presented results
are presented in Table A, which show the number of pa-
rameters, the time needed for a forward and backward
pass, and the number of epochs until convergence for
all the quantum models trained on the simulator. Each
epoch is composed of 10 batches, except the conditional
model which has ten batches per training energy bin (i.e.
six). Each batch contained 512 samples. Simulations
were run on a single CPU on the University of Geneva’s
Yggdrasil HPC cluster.

Model Param. Forward Backward Epochs
one dimensional 18 1.2 [s] 3.9 [s] 70

multivariate 45 1.9 [s] 9.4 [s] 100
conditional 27 1.5 [s] 4.5 [s] 30

Table IV: Number of parameters, time needed for a
forward and backward pass and number of epochs until
convergence for the three quantum models trained on a

simulator.
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