

ΠΗΔΔΓΗ

CERN openlab Technical Workshop 2022

Florian Rehm [CERN openlab, RWTH Aachen]

Su Yeon Chang [CERN openlab, EPFL], Sofia Vallecorsa [CERN openlab], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY]

23.03.2022

Future Simulations

Alternative to Calorimeter Monte Carlo Simulations

Previously: Deep Learning

- → Developed a Deep Learning (DL) approach for calorimeter simulations which requires fewer computing resources compared to Geant4
 - DL GAN (up to 160 000x speed up)

Now: Explore Potential of Quantum Computing

- Hope to solve problems faster and / or more accurately
- "Quantum Advantage" not yet reached \rightarrow only initial investigations
 - Using simplified models
 - Understanding advantages and challenges

Calorimeter Training Data

- 3D particle shower images
- Average over z-axis \rightarrow 1D image

25 Pixel

15

- Down sample to only 8 pixel
- Average of all input energies

0.08

0.07

0.06

0.03 0.02

0.01 0.00

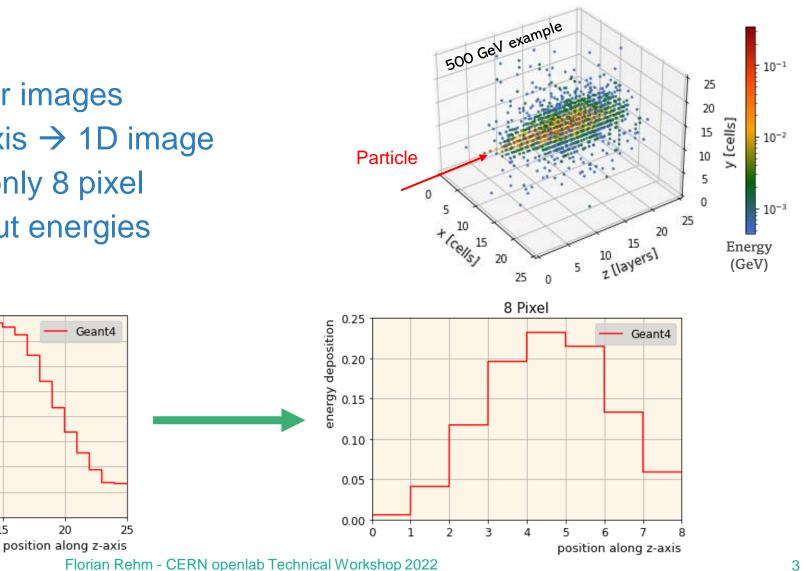
openlab

5

10

6 0.05 0.04

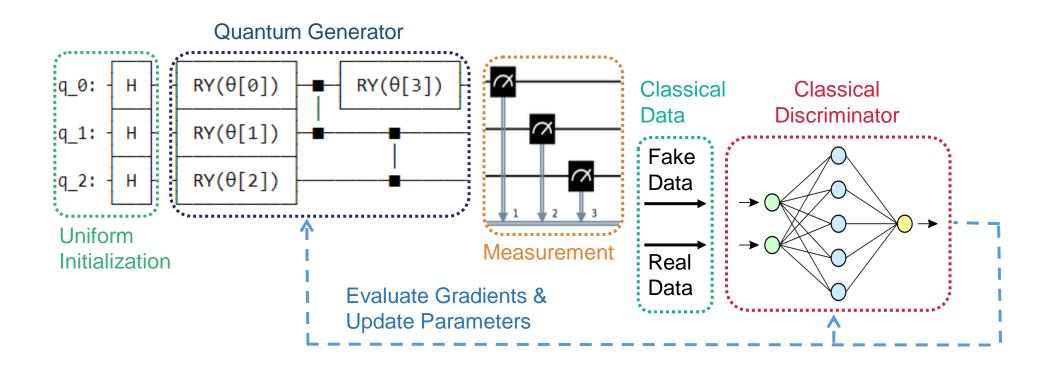
deposition



Hybrid qGAN

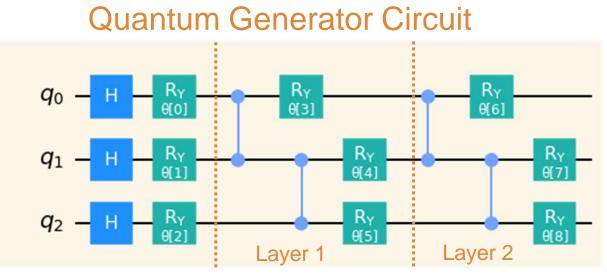
Quantum Generative Adversarial Networks

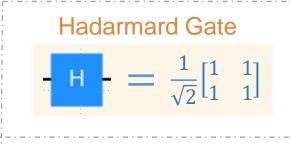
• Hybrid quantum – classical ansatz for generating shower images



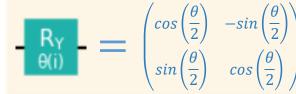
1D Quantum Generator Circuit

- Modified a Qiskit qGAN model developed by IBM
- 1D 8-pixel images
 - Amplitude encoding: 3 qubits $(2^3 = 8 \text{ states})$





Y-Rotational Gate



Controlled-Z Gate $= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$

1D Training without Noise

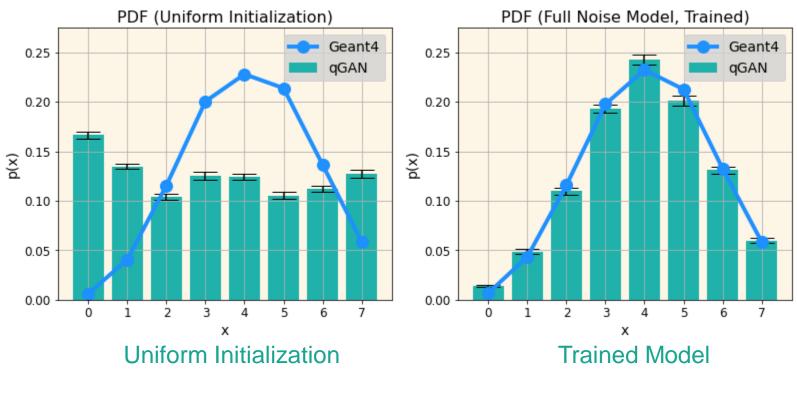
• Simulating the quantum computer on a classical computer

Run on olgpu-01 node:

- Only CPUs used

openlab

- Intel(R) Xeon(R) Gold 6130 CPU
- Training time per trial ~8h
- Hyperparameter search reduced training time and increased accuracy



→ Good results

Proceedings: http://ceur-ws.org/Vol-3041/363-368-paper-67.pdf

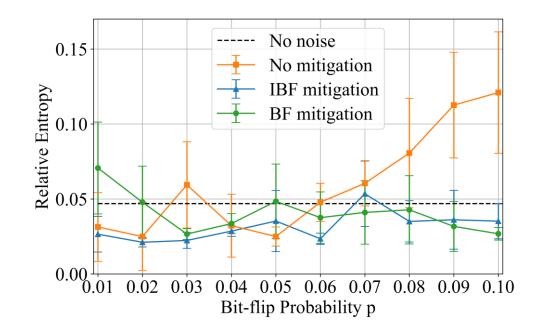
qGAN Noise Study

- Perform tests with NISQ quantum hardware noise
- Does the quantum machine learning training benefit from the noise?
- Are error mitigation techniques beneficial?

Noise Study and Error Mitigation

Readout Noise Only

- Train qGAN with readout noise
 - Training tolerant up to ~6% readout noise
- Test two error mitigation methods:
 - Conventional bit-flip (BF) mitigation
 - Independent bit-flip (IBF) mitigation
 - → Error mitigation becomes important for higher readout noise level
 - \rightarrow BF and IBF perform similar

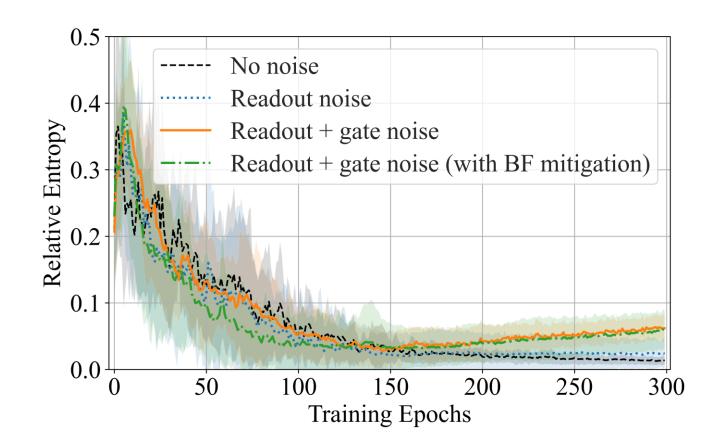


Paper: https://arxiv.org/abs/2203.01007

Full Noise Model

- Readout + gate level noise:
 - 2.5% readout noise
 - 1.5% two-qubit gate noise

- \rightarrow All configurations converge
- → The configurations with gate level noise are not stable



Florian Rehm - CERN openlab Technical Workshop 2022

- qGAN training is tolerant to readout noise up to a certain level
 - In our case ~6%
- For higher readout noise error mitigation becomes relevant
- Two-qubit gate errors seem to decrease accuracy of qGAN training

Future Work

- The recent qGAN model only generates probability distributions, no real samples
 - \rightarrow move to another model
- Develop qGAN model with different data encoding
 - Test a full qGAN model (generator and discriminator quantum circuits)
 - Convergence issues
- (q)GAN training is resource consuming and instable
 - \rightarrow develop a completely different generative model
- Goal: Run training on real IBMQ quantum hardware

Thanks for Listening

Quantum GANs for HEP Detectors Simulations

Florian Rehm [CERN openlab, RWTH Aachen]

Su Yeon Chang [CERN openlab, EPFL], Sofia Vallecorsa [CERN openlab], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY]

