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Introduction
Reinforcement learning (RL) in a nutshell
"| Agent |

)

Agent interacts with environment state| | reward action
* Receives reward after every action So| R . A,
* Learns through trial-and-error FS Environment ]4

RL book: Sutton & Barto

* Training sample: (s¢, a;, ¢, S¢+1,d¢t)

Decision making
 Agent follows policy: S = A
* Goal: find optimal policy *
* Optimal ¢ maximizing return: G; = Y, ¥*Ri1x

Expected return can be estimated through value function Q(s, a)

* Helps answering: “Best action to take in given state?”
* Not a priori known, but can be learned iteratively B e Sws s
. . . . . https://www.youtube.com/watch?v=Ss) AusntiU
* Q-learning: learn Q(s, a) using function approximator hitps/ /www.voutube.com/watch?v=Lus6xVIZAOM
https://www.youtube.com/watch?v=imOt8ST4Ej

« DQN: Deep Q-learning (feed-forward neural network)

FERL: Free energy based RL (quantum Boltzmann machine)
2
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https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://www.youtube.com/watch?v=Lu56xVlZ40M
https://www.youtube.com/watch?v=Lu56xVlZ40M
https://www.youtube.com/watch?v=imOt8ST4Ejc

Introduction
FERL motivation

Free energy-based reinforcement learning using a quantum processor
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Recent theoretical and experimental results suggest the possibility of using current and near-future

* Q-fu n Ct i O n eSti m ate : free e n e rgy Of co u pled Spi n SVSte m quantum hardware in challenging sampling tasks. In this paper, we introduce free energy-based

reinforcement learning (FERL) as an application of quantum hardware. We propose a method for
° . processing a quantum annealer’s measured qubit spin configurations in approximating the free energy
L4 S pl n Syste m @ q u a nt u m Boltz m a n n m a c h I n e (QB IVI ) of a quantum Bolemamn machine (Q_BM)‘ ‘We then apply this method to perform reinfor_cement
learning on the grid-world problem using the D-Wave 2000Q) quantum annealer. The experimental
results show that our technique is a promising method for harnessing the power of quantum sampling
in reinforcement learning tasks.

* Higher sample efficiency compared to classical deep Q-learning

* Limiting here: discrete state and action spaces T T
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FIG. 4: The learning curve of a deep @-network (DQN) with two D-Wave T — 0.5, — 2.0 SQA Chimera I' = 0.5, 8 = 2.0
hidden layers, each with eight hidden nodes, for the grid-world D-Wave Classi.cazl B = 2 0 SQA Bipartite T = 0' 5’ p— 2' 0
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https://arxiv.org/pdf/1706.00074.pdf

Introduction
QBM vs. DQN

FERL: OBM

* Network of coupled, stochastic, binary units
(e.g. qubits in spin up / down states)

* Q(s, a) = negative free energy of coupled spin system

* Sampling ground-state spin configuration using
(simulated) quantum annealing

* Implicit

Classical Q-learning: DQN
* Feed-forward, dense neural network
* Explicit
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Project overview

Objectives
* Implement FERL using simulated quantum annealing and am actual quantum annealer (D-Wave)
* Extend to continous state-action spaces for real-world applications: quantum actor-critic
* Compare quantum approach to classical RL in terms of

1) Training efficiency — “# steps required to train agent”
2) Descriptive power of QBM — “# weights needed”
Use case I: Q-learning on 1D beam steering model (simulated environment)

Use case ll: quantum actor-critic on 10D AWAKE beam line (simulated and real environment)

5 23.03.2022



Use case |: Q-learning on 1D beam steering

Environment

* OpenAl gym template

e Action: deflection angle
(Discrete)

e State: beam position
(continous)

 Reward: integrated beam
intensity on target

Target

Beam Position
Monitor (BPM)

Dipole
magnet

Action

|"\%'"
pY)
D
=
o
o

Beam line in reality more complex than shown here
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Use case I: Q-learning on 1D beam steering T;gionsi:' ‘:";:tzzr?l:!agzr
First successes with simulator and D-Wave quantum annealer teps, .

—— Action 0

—— Action 1
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D-Wave training and evaluation
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* First success on D-Wave 2000Q: FERL works!

ini . . o » 1.00 H ==
* Training on hardware and with simulator equally efficient s 5
* Using same hyperparameters: very helpful to optimize with £ 0% |
i @ 0.25 !
simulator and then run on real hardware oo :

-6 -4 -2 0 2 4 6

7 State, BPM pos. (mm) 23.03.2022



Use case |: Q-learning on 1D beam steering

Training efficiency & descriptive power
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Optimality metric: “in what fraction of possible states does agent take the right decision”
Training efficiency: FERL massively outperforms classical Q-learning (8+2 vs. 320+40 steps)
Descriptive power: QBM can reach high performance with much fewer weights than DQN (52 vs. ~70k)
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Project overview

Objectives
* Implement FERL using simulated quantum annealing and am actual quantum annealer (D-Wave)
* Extend to continous state-action spaces for real-world applications: quantum actor-critic
* Compare quantum approach to classical RL in terms of

1) Training efficiency — “# steps required to train agent”
2) Descriptive power of QBM — “# weights needed”
Use case I: Q-learning on 1D beam steering model (simulated environment)

Use case ll: qguantum actor-critic on 10D AWAKE beam line (simulated and real environment)
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Developing the quantum actor-critic
Quantum DDPG

* FERL for continous state-action spaces to tackle real-world problems:

inspired by classical actor-critic methods ol -

o[
'8 O
* Why use FERL in combination with classical policy network? 3 :

o

» QBM has ideal structure to replace classical critic e o
Q o
> Can we benefit from high training efficiency of QBM (?!) £ -
Intuitively: if critic learns faster, should be beneficial for actor training —

Critic

u(sl6") = a Main challenge

Q(s,al6?)

e Calculating derivative of critic wrt.
action V,Q(s,a|8?)

t * Numerical (finite difference) or semi-
analytical derivative options

Policy Gradient: Vorp = E,[VorQ(s,u(s16#)|69)] = Ef[V,Q(s, al0?)): Vguu(s|6¥)]

10 23.03.2022



Use case ll: Q-learning on 10D AWAKE beam line

Environment

AWAKE electron beam line
https://qitlab.cern.ch/be-op-ml-optimization/envs/awake

OpenAl gym template

Action: deflection angles at 10 correctors
(continous)

State: beam positions at 10 BPMs
(continuous)

Reward: negative rms from 10 BPMs

11

Hor. Dipole Vert. Dipoles

2 Beam charge diagnostics

§ Quadrupoles 8,

BPM n
< --» data pickup — target

LI«‘ < feedback /\//\fz‘g §
~
Q

Q il ’ ] i | ] ] ] |$

s

S AN N O I [ L |

9,:

K

fETsa

--» data pickup
<— feedback

-

electron - proton
overlap region

Credits: A. Scheinker

23.03.2022

12 BPMs and correctors c’

-
«
»

5 Optical diagnostics ——

AIBIV3se


https://gitlab.cern.ch/be-op-ml-optimization/envs/awake
https://cds.cern.ch/record/2715451/plots

Use case ll: Q-learning on 10D AWAKE beam line

Classical vs. quantum actor-critic: training efficiency

Classical actor-critic
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Quantum actor-critic

* Running 5 trainings and evaluations from scratch for averaging
* Showing current best performance, yet to finish hyperparameter optimization for both
 Quantum actor-critic is ahead, but the race is still on ...
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Use case ll: Q-learning on 10D AWAKE beam line
Test on actual AWAKE beam line

e Trained and tested our quantum actor-critic agent on simulated
10D AWAKE beam line

* Deployment on real beam line => agent works successfully © !
Even with 1 broken beam position monitor (BPM) ...

* Will redo with optimized agent and fixed BPM
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Summary

* FERL works both with simulator and on quantum annealing hardware

* Developed new quantum actor-critic algorithm that performs well and solves 10x10D
continuous state-action problem both in simulated and real environments

* See advantage in terms of sample efficiency and descriptive power for all cases studied
* More studies on D-Wave annealer planned
e Attempt training in more complex environment

Thank you !

14 23.03.2022
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Introduction
How to learn from training samples

Online Learning Experience Replay
* Learn directly and only from latest experience * Save transitions into memory buffer
* Highly correlated data * Sample batch from buffer to train agent on multiple past training
* Agent learns from each interaction once and discards it samples at every step
immediately
‘ . ‘ (S, A, R, S) .
| s (S,A,R,S) - |
| Transitiont (S, AR, S) Batch B —
New transitiont — —
—1 A =
-— d —-—
Replay Buffer D
endtoend Bl endtoend Bl

https://www.endtoend.ai/paper-unraveled/cer/
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Part I: Q-learning on 1D beam steering

Sampling efficiency

Optimality (%)
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* Optimality: “in what fraction of possible states does agent take the right decision”
* FERL massively outperforms classical DQN: 10 vs. 360 steps (ER), 90 vs. 160’000 steps (no ER)

* Required # weights QBM vs. Q-net is also completely different!
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Part Il: Q-learning on 10D AWAKE beam line
Quantum DDPG

s A
* Once issue fixed worked immediately really well © !!

e Every training is a success, sometimes with a few more or less evaluation steps
*  QBM critic can be very small and still produce good performance
* Here: unoptimized. Hyperparameter optimization will bring performance well up ...
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Part Il: Q-learning on 10D AWAKE beam line

Classical vs. quantum DDPG: # critic weights

* Following numbers are valid for 6D env (yet to rerun for 10D env)

* Classical DDPG
* Best compromise between # training updates vs. # evaluation steps
e Critic with: 400 x 300 x 1 nodes, i.e. 123k+ weights (see backup)

* QBM
* Best performance to date with 4 x 4 unit cells, 8 qubits each
* Not fully connected: following D-Wave 2000Q Chimera topology
* Total number of hidden-hidden (352) + visible-hidden (768) weights: 1’120

Factor 100 difference in # critic weights needed
actor networks are identical
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