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Kernel Methods for Support Vector Machine (SVM)
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• Non-linearly separable datasets may 

become linearly separable by including 

new features.

• This transformation is called a feature map

Hyperplane: 𝑤𝑇𝑥 + 𝑏 = 0 Hyperplane: 𝑤𝑇𝜑(𝑥) + 𝑏 = 0



Quantum Encoding

23.03.2022 F. Di Marcantonio - QTI CERN 4

• Non-linearly separable datasets may 

become linearly separable by including 

new features.

• This transformation is called a quantum feature map

Support Vectors
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We use quantum computer to:

• encode the data

• estimate the kernel estimating the fidelity
between pairs of feature vectors

• Classical computer implementing the quantum 
kernel Ki,j is then used to do the SVM according 
to:

𝑙𝑎𝑏𝑒𝑙 𝑧 = 𝑠𝑖𝑔𝑛(

𝑖∈𝑇

𝛼𝑖𝑦𝑖𝑲 𝑥𝑖 , 𝑧 + 𝑏 )

x z

V. Havlicek et al, Nature 567, 209 (2019) 

Quantum Kernel Estimation for SVM (QSVM)
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S. Moradi et al, Scientific Reports 12, 1851 (2022) 



• Computations exponentially hard 

classically

• Expressivity of QML hinder

generalization

So far, results found with trial and error but

we need a reliable theoretical framework.

A priori methodology to assess quantum 

advantage according to data and kernels 

considered. 
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HY. Huang et al, Nature Communication 12, 2631 (2021)

Metrics for Potential Quantum Advantage
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Real world datasets & Huang metrics
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Clinical data classification with noisy intermediate scale 
quantum computers S. Moradi et al, Scientific Reports 12, 1851 (2022) 

Synthetic weather radar using hybrid 

quantum-classical machine learning

G. R. Enos et al, Arxiv 12, 1851 (2022) 



• Reduce the dimensionality of Feature 

Space by projection of QK:

➢ To better generalize

➢ To keep features into states

classically hard

This projected kernel defines a feature 

map in a subspace of the large Hilbert 

Space. It can still express an high number

of arbitrary functions (and their powers).
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Projected Quantum Kernel
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HY. Huang et al, Nature Communication 12, 2631 (2021)



Employing Quantum SVM Kernel method with IBM 

statevector simulator for Higgs decays analysis.
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S.L. Wu, QuantHEP Seminar, 11/2020

QML for HEP: Past and Future 
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V. Belis, EPJ Web of Conferences 251, 03070 (2021)

high n° of features

openlab qti machines

high computational

cost for QK
high n° of qubits



• Geometry and Complexity tests to assess for potential Quantum Advantage.

• Quantum Kernels can have too expressive power hindering generalization and 

learnability.

• Only restricted embeddings allow to learn from data, these are called Projected

Quantum Kernels and are hard to reproduce by classical models.

Can QML bring a speed-up in data analysis for HEP?
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Conclusions
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Thanks!
• sofia.vallecorsa@cern.ch

• michele.grossi@cern.ch

• francesco.di.marcantonio@cern.ch
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