Quantum Self-Attention

Dominic Pasquali

March, 23 2022

2022 CERN openlab Technical Workshop

- Motivation for Quantum GANs & Quantum Self-Attention
- Classical Self-Attention
- Quantum Self-Attention
- Multi-Head Attention

Motivation For Quantum GANs & Quantum Self-Attention

Why GANs:

- Simulation of particle transport through matter is fundamental for understanding the physics of High Energy Physics (HEP) experiments
- Most of LHC CPU budget (~ 1M CPU-years!!!) is dedicated to Monte Carlo simulation
- Faster approach: Replace Monte Carlo simulation with deep learning algorithms (e.g. GANs)

Why QGANs:

- compressed data representation in quantum states
- expect faster training with less number of parameters
- potential advantage of Quantum GAN^[1]

Explore different prototypes of Quantum GANs to improve model

• Quantum Self-Attention in Classical GANs to boost performance in hybrid architecture

Learning

Input

Query, Key, Value concept \rightarrow analogous to retrieval systems

Example: When you searching for videos on YouTube's search engine

- search engine maps the **Query (text in the search bar)** against Keys
- Keys: descriptors (video title, description, etc.) of YouTube videos
- search engine returns the best matched videos (Values)

Adding more words adds more resulting vectors (while using the same learned matrices)

For now, let's only consider 2 words as our input: "Learning Machines"

Classical Se	elf-Attentio	on	∘ Hyperpa	rameter (!!!)
	Input	Learning	• Other va Machines	lues may be used
	Embedding	X 1	X √d _{key}	$y = \sqrt{64} = 8$
	Queries	q ₁	q ₂ (8 is the	value used in
Computing	Keys	k ₁	k ₂	1 YOU NEED (2017))
output for the	Values	v ₁	v ₂	
word Learning	Score	q ₁ ∙ k ₁ = 112	q ₁ • k ₂ = 96	
	Score ÷ √d _{key}	112 / √d _{key} = 14	96 / $\sqrt{d_{key}}$ = 12	

d_{key} = dimension of key vector • Leads to more stable gradients

	Input	Learning	Machines	• Other values may be used
	Embedding	X	X 2	$\sqrt{d_{key}} = \sqrt{64} = 8$
	Queries	q ₁	q ₂	(8 is the value used in the
Computing	Keys	k ₁	k ₂	original sen-alternion paper)
output for the	Values	v ₁	V ₂	
word <i>Learning</i>	Score	q₁ • k₁ = 112	q ₁ • k ₂ = 96	
	Score ÷ √d _{kev}	112 / √d _{key} = 14	96 / $\sqrt{d_{key}}$ = 12	2
	Softmax	s ₁ = 0.88	<mark>s₂ = 0.12</mark>	

d_{key} = dimension of key vector • Leads to more stable gradients

Hyperparameter (!!!)

	Input	Learning	Machines	• Other values may be used
Computing	Embedding		X	$\sqrt{d_{kev}} = \sqrt{64} = 8$
	Queries	\mathbf{q}_1	² q ₂	(8 is the value used in the
	Keys	k ₁	k ₂	original self-attention paper)
output for the	Values	v ₁	V ₂	
word <i>Learning</i>	Score	q₁ • k₁ = 112	q ₁ • k ₂ = 96	
	Score ÷ √d _{kev}	112 / √d _{key} = 14	96 / $\sqrt{d_{key}}$ = 12	2
	Softmax	s ₁ = 0.88	<mark>s</mark> ₂ = 0.12	
	Softmax • Value	$\mathbf{m}_1 = \mathbf{s}_1 \cdot \mathbf{v}_1 =$	$m_2 = s_2 \cdot v_2 =$	

d_{key} = dimension of key vector • Leads to more stable gradients

Hyperparameter (!!!)

Classical Se	lf-Attenti	on		• Hyperparameter (!!!)
	Input	Learning	Machines	
	Embedding	X	X	$\sqrt{d_{key}} = \sqrt{64} = 8$
	Queries	\mathbf{q}_1	² q ₂	(8 is the value used in the
Computing	Keys	k ₁	k ₂	original self-attention paper)
output for the	Values	v ₁	v ₂	
word <i>Learning</i>	Score	q₁ • k₁ = 112	q ₁ • k ₂ = 96	
	Score ÷ √d _{kev}	112 / √d _{key} = 14	96 / $\sqrt{d_{key}}$ = 12	2
	Softmax	<mark>s₁ = 0.88</mark>	<mark>s</mark> ₂ = 0.12	
	Softmax • Value	$\mathbf{m}_1 = \mathbf{s}_1 \cdot \mathbf{v}_1 =$	$\mathbf{m}_2 = \mathbf{s}_2 \bullet \mathbf{v}_2 = \mathbf{s}_2 \bullet \mathbf{v}_2$	
	Sum	$z_1 = m_1 + m_2 =$		

d_{key} = dimension of key vector • Leads to more stable gradients

	Input	Learning	Machines	• Other values may be used
	input		Machines	
	Embedding	X	X	\sqrt{d} $-\sqrt{64}$ -8
	Queries	\mathbf{q}_1	² q ₂	(8 is the value used in the
	Keys	k.	k.	original self-attention paper)
This is only for the word	Values	\mathbf{v}_1	V ₂	
l earning!	Score	q ₁ • k ₁ =	$q_1 \cdot k_2 = 96$	
Loannig		112		
	Score 🕂	112 / √d _{kov} =	96 / $\sqrt{d_{kov}} = 12$	2
	√d _{kev}	14 ^{key}	ĸey	
	Softmax	<mark>s</mark> ₁ = 0.88	<mark>s₂ = 0.12</mark>	
	Softmax • Value	$\mathbf{m}_1 = \mathbf{s}_1 \cdot \mathbf{v}_1 =$	$\mathbf{m}_2 = \mathbf{s}_2 \cdot \mathbf{v}_2 = \mathbf{s}_2 \cdot \mathbf{v}_2$	
	Sum	$z_1 = m_1 + m_2 =$		
CERN OUANTUM TECHNOLOGY INITIATIVE				

d_{key} = dimension of key vector • Leads to more stable gradients

Hyperparameter (!!!)

12

Classical Self-Attention: Another Look

WQ

Multi-Head Attention

Concatenate Z from each attention head:

Efficient Multi-Head Attention

Stacking words results in a larger matrix

Allows for representing each input as a (larger) matrix

Learning Machines

 W_0

CERN Quantum Technology Initiative Accelerating Quantum Technology Research and Applications

Thank You!

In < 50 epochs, we get (preliminary) results with MNIST dataset! Dr. Sofia Vallecorsa

Dr. Michele Grossi

Questions?

