
Quantum Self-Attention

Dominic Pasquali

March, 23 2022

2022 CERN openlab Technical Workshop



Agenda

• Motivation for Quantum GANs & Quantum Self-Attention

• Classical Self-Attention

• Quantum Self-Attention

• Multi-Head Attention

2



Motivation For Quantum GANs & Quantum Self-Attention

3

Why GANs:

● Simulation of particle transport through matter is fundamental for understanding the physics of High Energy Physics (HEP) 

experiments

● Most of LHC CPU budget (~ 1M CPU-years!!!) is dedicated to Monte Carlo simulation

● Faster approach: Replace Monte Carlo simulation with deep learning algorithms (e.g. GANs)

Why QGANs:

● compressed data representation in quantum states

● expect faster training with less number of parameters

● potential advantage of Quantum GAN[1]

Explore different prototypes of Quantum GANs to improve model

● Quantum Self-Attention in Classical GANs to boost performance in hybrid architecture



Classical Self-Attention

4

Query, Key, Value concept ➡ analogous to retrieval systems

Example: When you searching for videos on YouTube’s search engine

● search engine maps the Query (text in the search bar) against Keys

● Keys: descriptors (video title, description, etc.) of YouTube videos

● search engine returns the best matched videos (Values)

WQ, WK, WV

learned 

matrices

q1

v1

k1

X
1

Embedding

Queries WQ

Keys

Values

Input Learning

WK

WV

X
1

q1

k1

v1

=

=

=

✕

✕

✕

X
1

X
1

WQ

WK

WV



Classical Self-Attention

5

q1

v1

k1

X
1

Embedding

Queries WQ

Keys

Values

Input Learning

WK

WV

q2

v2

k2

X
2

Machines

Adding more words adds 

more resulting vectors

(while using the same 

learned matrices)

For now, let’s only 

consider 2 words as our 

input: “Learning Machines”



Classical Self-Attention

6

Input Learning

X
1

Embedding X
2

Machines

q1Queries q2

k1
Keys k2

v1Values v2



Classical Self-Attention

7

Input Learning

X
1

Embedding X
2

Machines

q1Queries q2

k1
Keys k2

v1Values v2

q1 • k1 = 

112

Score q1 • k2 = 96

Computing 

output for the 

word Learning



Classical Self-Attention

8

Input Learning

X
1

Embedding X
2

Machines

q1Queries q2

k1
Keys k2

v1Values v2

q1 • k1 = 

112

Score q1 • k2 = 96

112 / √dkey = 

14

Score ➗

√dkey

96 / √dkey = 12

dkey = dimension of key vector

○ Leads to more stable gradients

○ Hyperparameter (!!!)

○ Other values may be used

⬇
√dkey = √64 = 8

(8 is the value used in

Attention Is All You Need (2017))

Computing 

output for the 

word Learning



Classical Self-Attention

9

Input Learning

X
1

Embedding X
2

Machines

q1Queries q2

k1
Keys k2

v1Values v2

q1 • k1 = 

112

Score q1 • k2 = 96

112 / √dkey = 

14

Score ➗

√dkey

96 / √dkey = 12

s1 = 0.88Softmax s2 = 0.12

dkey = dimension of key vector

○ Leads to more stable gradients

○ Hyperparameter (!!!)

○ Other values may be used

⬇
√dkey = √64 = 8

(8 is the value used in the

original self-attention paper)

Computing 

output for the 

word Learning



Classical Self-Attention

10

Input Learning

X
1

Embedding X
2

Machines

q1Queries q2

k1
Keys k2

v1Values v2

q1 • k1 = 

112

Score q1 • k2 = 96

112 / √dkey = 

14

Score ➗

√dkey

96 / √dkey = 12

s1 = 0.88Softmax s2 = 0.12

Softmax • Value m1 = s1 • v1 = m2 = s2 • v2 = 

dkey = dimension of key vector

○ Leads to more stable gradients

○ Hyperparameter (!!!)

○ Other values may be used

⬇
√dkey = √64 = 8

(8 is the value used in the

original self-attention paper)

Computing 

output for the 

word Learning



Classical Self-Attention

11

Input Learning

X
1

Embedding X
2

Machines

q1Queries q2

k1
Keys k2

v1Values v2

q1 • k1 = 

112

Score q1 • k2 = 96

112 / √dkey = 

14

Score ➗

√dkey

96 / √dkey = 12

s1 = 0.88Softmax s2 = 0.12

Softmax • Value

Sum z1 = m1 + m2 =

m1 = s1 • v1 = m2 = s2 • v2 = 

dkey = dimension of key vector

○ Leads to more stable gradients

○ Hyperparameter (!!!)

○ Other values may be used

⬇
√dkey = √64 = 8

(8 is the value used in the

original self-attention paper)

Computing 

output for the 

word Learning



Classical Self-Attention

12

Input Learning

X
1

Embedding X
2

Machines

q1Queries q2

k1
Keys k2

v1Values v2

q1 • k1 = 

112

Score q1 • k2 = 96

112 / √dkey = 

14

Score ➗

√dkey

dkey = dimension of key vector

○ Leads to more stable gradients

○ Hyperparameter (!!!)

○ Other values may be used

⬇
√dkey = √64 = 8

(8 is the value used in the

original self-attention paper)

96 / √dkey = 12

s1 = 0.88Softmax s2 = 0.12

Softmax • Value

Sum z1 = m1 + m2 =

m1 = s1 • v1 = m2 = s2 • v2 = 

This is only for 

the word 

Learning!



Classical Self-Attention

13

Input Learning

X
1

Embedding X
2

Machines

q1Queries q2

k1
Keys k2

v1Values v2

Score q2 • k2 = 24

16 / √dkey = 2Score ➗

√dkey

24 / √dkey = 3

s1 = 0.27Softmax s2 = 0.73

Softmax • Value

Sum

m1 = s1 • v1 = m2 = s2 • v2 = 

Doing this for 

the word 

Machines is 

just as easy

z2 = m1 + m2 =

Creating a score 

with the query 

from Machines

Summing over 

each m from the 

new values

q2 • k1 = 16



Classical Self-Attention: Another Look

14



Quantum Self-Attention

15

WQ, WK, WV

learned 

matrices

quantum 

circuits!

q1

v1

k1

X
1

Embedding

Queries WQ

Keys

Values

Input Learning

WK

WV

X
1

q1

k1

v1

=

=

=

✕

✕

✕

X
1

X
1

WQ

WK

WV



Multi-Head Attention

1616

Queries

Keys

Values

XEmbedding

Input Learning

Q0

V
0

K0

W0
Q

W0
K

W0
V

Attention Head #0

Q1

V
1

K1

W1
Q

W1
K

W1
V

Attention Head #1

Z0
Z1



Multi-Head Attention

1717

Z0

+

Z1

+ … +

Z7

Concatenate Z from each attention head:

Multiply 

concatenated Z’s

with learned 

matrix W0

W0

Resulting matrix Z

contains information 

from all attention 

heads

Z



Efficient Multi-Head Attention

1818

Stacking words results in a 

larger matrix

Allows for representing each 

input as a (larger) matrix

Learning

Machines

W0



19

Thank You!

Dr. Sofia Vallecorsa

Dr. Michele Grossi

Computational Resources:

In < 50 epochs, we get 

(preliminary) results

with MNIST dataset!



Questions?


