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Motivation For Quantum GANs & Quantum Self-Attention
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Why GANs:

● Simulation of particle transport through matter is fundamental for understanding the physics of High Energy Physics (HEP) 

experiments

● Most of LHC CPU budget (~ 1M CPU-years!!!) is dedicated to Monte Carlo simulation

● Faster approach: Replace Monte Carlo simulation with deep learning algorithms (e.g. GANs)

Why QGANs:

● compressed data representation in quantum states

● expect faster training with less number of parameters

● potential advantage of Quantum GAN[1]

Explore different prototypes of Quantum GANs to improve model

● Quantum Self-Attention in Classical GANs to boost performance in hybrid architecture



Classical Self-Attention

4

Query, Key, Value concept ➡ analogous to retrieval systems

Example: When you searching for videos on YouTube’s search engine

● search engine maps the Query (text in the search bar) against Keys

● Keys: descriptors (video title, description, etc.) of YouTube videos

● search engine returns the best matched videos (Values)

WQ, WK, WV

learned 

matrices

q1

v1

k1

X
1

Embedding

Queries WQ

Keys

Values

Input Learning

WK

WV

X
1

q1

k1

v1

=

=

=

✕

✕

✕

X
1

X
1

WQ

WK

WV



Classical Self-Attention

5

q1

v1

k1

X
1

Embedding

Queries WQ

Keys

Values

Input Learning

WK

WV

q2

v2

k2

X
2

Machines

Adding more words adds 

more resulting vectors
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For now, let’s only 

consider 2 words as our 

input: “Learning Machines”
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dkey = dimension of key vector

○ Leads to more stable gradients

○ Hyperparameter (!!!)

○ Other values may be used

⬇
√dkey = √64 = 8

(8 is the value used in

Attention Is All You Need (2017))
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Classical Self-Attention: Another Look
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Quantum Self-Attention
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Multi-Head Attention
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Efficient Multi-Head Attention
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Stacking words results in a 

larger matrix

Allows for representing each 

input as a (larger) matrix
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Thank You!

Dr. Sofia Vallecorsa

Dr. Michele Grossi

Computational Resources:

In < 50 epochs, we get 

(preliminary) results

with MNIST dataset!



Questions?


