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Examples of studied physics processes
Classification - Supervised

Higgs boson production 

Model-dependent search: New physics signature 
known.

Anomaly detection – (Un)Supervised
Graviton production (mJJ spectrum)

Model-agnostic search: New physics 
signature unknown.
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Workflow and motivation

Why quantum machine learning for particle physics? 

Fundamental motivation: can quantum models utilise the quantum correlations inherent in HEP data leading 
to performance advantages? 

- Find inductive bias based on prior knowledge on the data generation (quantum process for HEP data). 

- If the bias can be constructed and is classically difficult to simulate → quantum advantage. 
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Hybrid Quantum-Classical algorithms
Noisy Intermediate Scale Quantum (NISQ) devices:

- Circuit width: limited number of qubits (superconducting 
qubits at IBM up to 127).

- Circuit depth: limited number of operations per qubit 
(small decoherence times).

QML models for classification (blueprints)

Quantum Support Vector Machines (QSVM) 

Variational Quantum Circuits (VQC)
Quantum “Neural Networks”

To accommodate for NISQ limitations, feature reduction is needed: (Hybrid) Autoencoder models.
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Advanced feature reduction techniques
Goal: Reduce the number of features while preserving the discrimination power of the original physical features.

- Investigated the power of conventional ML dimensionality reduction techniques (e.g., manifold learning).
- Conclusion: Deep Learning techniques based on (Hybrid) Autoencoders (physics aware) are superior.

Assess the power of hybrid quantum-classical networks:
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a Able to match state-of-the art performance on ideal 
quantum simulations:
- QSVM on the latent space of particle physics events.
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Identifying new physics (graviton) via anomaly detection

Performance

- Distance from cluster calculated between
quantum states.

- Minimisation of the distance with a 
quantum algorithm.
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Conclusions and outlook
Summary:

• State-of-the-art performance of the developed hybrid data compression models.

• Feature reduction is crucial, training classical + quantum at the same time yields better 
results (hybrid VQC) than step-wise training.

Ongoing/Future work:

• Investigate other physics signatures and processes.

• Running the models on real hardware and assess the need for error mitigation.

• Anomaly detection (AD) for model independent searches of new physics using kernel-based 
models.

• Quantum branches (QSVM+VQC) on developed networks for feature reduction and AD.
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Thank you!

More information: Higgs analysis with quantum classifiers, EPJ Web Conf., 251 (2021) 03070,
https://doi.org/10.1051/epjconf/202125103070, pre-print: arXiv:2104.07692.

In preparation:
- Classification and anomaly detection in the latent space of high energy physics events.
- Hybrid Autoencoder and VQC studies for optimal feature reduction.

https://doi.org/10.1051/epjconf/202125103070
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SVM objective function is equivalent to (dual 
Lagrangian):

maximize

subject to

Kernel trick:

Make the kernel quantum:

Support Vector Machines



• Data embedding circuit (feature map) here is fixed.
• Layers of parametrised quantum gates → trainable parameters.
• Output of the model → expectation value of an observable on the prepared state  

e.g. measure the first qubit on the computational basis

• Classification: if                     → signal, otherwise background. 

Variational Quantum Circuits
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AE, QSVM, and *Hybrid VQC

Sinkclass AE shows best performance when considering both 
reconstruction power and classification power.

It even matches the classical state-of-the-art result! Results from: https://doi.org/10.1051/epjconf/202125103070
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