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Abstract
Accurate molecular force fields are of paramount importance for the efficient implementation of
molecular dynamics techniques at large scales. In the last decade, machine learning (ML) methods
have demonstrated impressive performances in predicting accurate values for energy and forces
when trained on finite size ensembles generated with ab initio techniques. At the same time,
quantum computers have recently started to offer new viable computational paradigms to tackle
such problems. On the one hand, quantum algorithms may notably be used to extend the reach of
electronic structure calculations. On the other hand, quantumML is also emerging as an
alternative and promising path to quantum advantage. Here we follow this second route and
establish a direct connection between classical and quantum solutions for learning neural network
(NN) potentials. To this end, we design a quantum NN architecture and apply it successfully to
different molecules of growing complexity. The quantum models exhibit larger effective dimension
with respect to classical counterparts and can reach competitive performances, thus pointing
towards potential quantum advantages in natural science applications via quantumML.

1. Introduction

Since more than half a century, atomistic simulations represent one of the sharpest tools available for
scientific investigation in a wide range of research fields, such as chemistry, materials science and biology
[1, 2]. To perform a molecular dynamics (MD) calculation, in which the classical equations of motion are
numerically integrated for each atom in the system under study, an accurate knowledge of potential energy
surfaces (PES) and local forces is required. This information, originating from the quantum mechanical
behaviour of electrons and nuclei, could in principle be deducted from the exact solution of the Schrödinger
equation. However, the complexity of such task makes it impractical beyond a few small-scale paradigmatic
examples. In a delicate balance between performance and accuracy, approximate solution methods such as
density functional theory (DFT) have therefore been proposed, leading to the family of so called ab initio
MD techniques [3, 4]. These precise yet computationally demanding strategies can be applied up to
medium-sized systems, while larger problems may only be tackled, typically at a lower accuracy, with
empirical force fields (FFs) [5]. In fact, MD runs require on-the-fly computations of energy and forces at each
time step and for each configuration visited by the system during its evolution: therefore, the use of simple
parametrized functional potentials (e.g. the FFs) that can be evaluated in a fraction of the time required by
actual quantum mechanical calculations is the only viable strategy when thousands of atoms are involved.

Recently, machine learning (ML) has emerged as a new technological paradigm offering promising and
effective solutions for physics and chemistry [6, 7]. In the context of MD simulations, a pioneering approach
to ML-powered FFs was proposed by Behler and Parrinello using neural networks (NN) [8]. The original idea
has later been refined and extended [9–16], also promoting the development of specific software libraries
[17, 18]. The fundamental insight behind the so called neural network potentials (NNPs) is two-fold: first,
they incorporate the idea that large performance gains can be achieved by directly modelling some form of
functional relationship between structure (i.e. atomic positions) and properties of interest (e.g. energies),

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ac7d3c
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ac7d3c&domain=pdf&date_stamp=2022-7-15
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7461-3342
https://orcid.org/0000-0003-2008-5956
https://orcid.org/0000-0002-7003-5765
https://orcid.org/0000-0001-5690-1981
mailto:fta@zurich.ibm.com
mailto:ita@zurich.ibm.com


Mach. Learn.: Sci. Technol. 3 (2022) 035004 O Kiss et al

essentially bypassing the explicit solution of the underlying quantum mechanical problem. Second, NNPs
typically enjoy the generalization capabilities of ML models, maintaining extremely good accuracy even on
previously unseen configurations when trained on data sets constructed with ab initiomethods.

Despite the success of classical ML techniques in the realm of atomic and molecular dynamical processes,
the quantummechanical character of the fundamental laws governing such phenomena immediately leads to
the question whether quantum machine learning (QML) methods could provide further significant
advantages [6, 19, 20]. The interested reader can refer to [21, 22] for a thorough introduction on quantum
computation and QML, respectively.

Thanks to the high practical relevance of the problem, the learning and generation of molecular FFs may
actually constitute a very natural and appealing playground in which QML could be tested and compared
with state-of-the-art classical counterparts. An important aspect of such comparison lies in the fact that the
properties to be learned, namely the relationship between configurations, energies and forces, are generally
hard to be derived directly from first principles due to their quantum mechanical origin. At the same time,
it has recently been suggested that information theoretical complexity considerations are strongly affected by
the availability of training data even when quantum systems are involved [23], with classical ML methods
showing competitive performances, e.g. in predicting non-trivial many-body properties [24]. Several
important questions may therefore be addressed, from an overall assessment of the capabilities of QML
protocols for PES and FFs reconstruction to systematic tests of classical versus quantum techniques for
learning specific quantum mechanical properties through data.

In this work, we take a first step in such direction by establishing a direct connection between QML and
NNPs. In particular, we demonstrate how quantum neural networks (QNNs) can be employed, in
combination with classical data sets, as trainable models for the prediction of energies and forces in
molecular systems. Although many different realizations of QNNs and quantum perceptrons are known in
the literature [25–33], here we will focus on variational parametrized quantum circuits (PQC) [34–38],
which offer the greater flexibility for near term applications. It is worth mentioning that some instances of
QNNs, such as the ones that we will implement in the following, are known to exhibit greater power, as
measured by the effective dimension in model space, compared to their classical equivalents [39]—a fact that
places them among the most promising candidates in the quest for quantum advantage in ML. We also
notice that, while variational quantum algorithms are often employed for the direct ab initio computation of
Hamiltonian spectra [40, 41] and corresponding forces [42], here we take a rather different approach [43],
using quantum resources to learn an implicit mapping between atomic coordinates, energy and forces,
without any explicit solution of the quantum mechanical problem itself.

2. Model andmethods

2.1. Quantum neural networks
We adopt a supervised learning approach with training sets of the formA= {(C⃗α,Eα, F⃗α)}, namely
collections of n-atom molecular configurations C⃗α = (xαa1 ,y

α
a1 ,z

α
a1 , . . . ,x

α
an ,y

α
an ,z

α
an) with associated total

energies Eα and forces F⃗α = (Fα
a1,x,F

α
a1,y,F

α
a1,z, . . . ,F

α
an,x,F

α
an,y,F

α
an,z). Here, the index α runs over the different

elements of the training set, cαai for c= x,y,z is the Cartesian coordinate of the ith atom and:

Fα
ai,c =−∂Eα

∂cαai
, (1)

is the force acting on atom ai along the direction c. We will also denote with |A| the number of samples
contained inA.

The training data, derived from classical ab initiomethods that will be specified in the following, are used
to optimize the predictions made by quantum models, specifically QNNs. These are based on the general
notion of PQCs [33, 35, 37], consisting of a reference initial state |0〉, an output observableO and a model
unitaryM(⃗x,Θ), depending on both some input data x⃗ and a set of trainable parametersΘ= {θ⃗0, . . . , θ⃗D}.
The function expressed by a QNN takes the general form:

fΘ(⃗x) = 〈0|M(⃗x,Θ)†OM(⃗x,Θ)|0〉, (2)

and can be represented schematically as shown in figure 1. For our application of QNNs to PES learning, the
Cartesian coordinates C⃗α will be playing the role of the input x⃗. In practical realizations, we allow for an
additional classical preprocessing map y⃗=W(⃗x), which in our specific context can serve the purpose of
converting between Cartesian coordinates and more suitable molecular descriptors, as well as enhancing the
effective nonlinearity of the model [34].
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Figure 1. Quantum neural network model. The input data x⃗ are preprocessed with the classical (yellow) functionW and encoded
with the map Φ (blue). The variational layers (red) contain free parameters that are optimized to minimize the loss function
L(⃗x,Θ).O represents the computation of the expectation value of the observable through quantum measurements.

It is worth noticing that while the term QNNs is used to emphasize some significant similarities between
parametrized quantum models and classical neural networks (NN)—most prominently the layered structure
and the use of trainable parameters—some important differences also exists. Indeed, contrary to the usual
feed-forward scheme of classical NN, QNNs are quite easily designed and interpreted in the form of
re-uploading circuits [44, 45], where trainable layers Uℓ(θ⃗ℓ), red in figure 1, are alternated with data
encoding ones Φℓ(⃗y), blue in figure 1, with the same classical input values appearing multiple times. The
choice of this re-uploading architecture is actually related to a more fundamental difference between classical
and quantum NNs, namely the fact that quantum unitary layers act linearly on quantum states, hence
lacking an explicit implementation of the usual non-linear activation function as a separate step. Instead, the
non-linear manipulation of the classical input data is essentially referred to the choice of the encoding map,
the trainable quantum gates and the final measurements.

It has actually been shown that the re-uploading mechanism makes QNNs universal functional
approximators [44–46]: more specifically, any QNN output function (equation (2)) can be recast into a
truncated Fourier series with a set of available independent frequencies determined by the eigenvalues of the
encoding map and growing with the number of re-uploading steps. While recent results suggest that, by
expanding the size of the quantum registers, these models can actually be mapped back on simpler sequential
ones in which all input operations appear at the beginning [47], one can still profit from the insights offered
by the re-uploading picture as a guide for intuition in the actual design of application-specific QNNs. As an
example, theory suggests that, by adjusting the number of input layers, the richness of the Fourier spectrum
can be systematically increased.

The structure of QNNs is completed by choosing a physical observableO and a suitable loss function L,
whose minimization drives the update of the trainable parameters via a classical optimization routine. In the
following, we will make the simple choice:

O = σ1
z , (3)

namely we will take the expectation value of the Pauli-z operator on the first qubit to construct the network
output. Moreover, we will use a quadratic mean square error (MSE) loss function:

Lχ(A,Θ) =MSE(Energy)+χ ·MSE(Forces), (4)

with the hyperparameter χ weighting the contribution of energy and forces [48]. In practice, we directly
associate the output of the QNN with the energy potential surface by defining:

MSE(Energy)=
1

|A|
∑
α∈A

(
fΘ(C⃗α)− Eα

)2
. (5)

In parallel, consistent predictions for the forces are obtained by taking the derivative of the quantum circuit
output with respect to the molecular coordinates:

MSE(Forces)=
1

3n · |A|
∑
α∈A

∥∥∥∇c fΘ(C⃗α)+ F⃗α
∥∥∥2. (6)

We leave for future works the investigation of alternative strategies, such as the use of two independent
quantum circuits for the separate learning of energies and forces.
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2.2. Encoding layers
As mentioned in the previous section, the encoding operations Φℓ(⃗y) are used to input the molecular
configurations in the QNN model. Here, we assume for simplicity that these encoding unitaries are identical
across different layers or re-uploading stages, i.e. Φℓ(⃗y)≡ Φ(⃗y). Moreover, let us denote by N the linear
dimension of the feature vector y⃗, where in general N can differ from 3 n due to the preprocessing stage.
Following standard practices [49], we will use N qubits to encode and manipulate N-dimensional features
y⃗= (y1, . . . ,yj, . . . ,yN).

The quantum feature map Φ(⃗y) is then constructed according to the expression:

Φ(⃗y) = E (⃗y)S (⃗y), (7)

where S (⃗y) is a collection of single-qubit Pauli-y rotations:

S (⃗y) =
N∏
j=1

exp

(
−i

σ
( j)
y

2
yj

)
, (8)

and E (⃗y) is an entangling operation of the form:

E (⃗y) =
∏

( j,k)∈P

exp
(
−i(1/2)σ( j)

z σ(k)
z yjyk

)
. (9)

The latter directly resembles the so called ZZ feature map originally introduced in [49]. The set of qubit pairs
P can be chosen in different ways, balancing ease of implementation on physical architectures with
functional expressivity. Standard examples include linear entanglement:

Plinear = {( j, j+ 1) | j= 1, . . . ,N− 1}, (10)

circular entanglement:

Pcirc = {( j, j+ 1 mod N) | j= 1, . . . ,N}, (11)

and full entanglement:

Pfull = {( j,k) | j= 1, . . . ,N− 1,k> j}. (12)

For further generality, we also define a natural extension of the ZZ feature map to degree l interactions,
adding factors of the form:

exp

(
−i(1/2)

l∏
k=1

yjkσ
( jk)
z

)
, (13)

where, in principle, the l qubits ( j1, . . . , jl) can be arbitrarily chosen among the N available.
In figure 2 we explicitly show a 3-qubit example with a full 2-qubit entangling map and an additional

l= 3 operation. All multiple qubit operations are already decomposed into a standard universal set made of
single-qubit rotations and CNOTs [50], which is typical of superconducting quantum computing
architectures.

Before moving to the description of the trainable part of the QNNmodels, let us also remark a few points
about the classical preprocessing stepW (see figure 1). As suggested above, this classical manipulation is
generally used to enhance the nonlinear behaviour of the network, for example by taking inverse
trigonometric functions of the original inputs [34]. At the same time, we can use this initial step to embed
the relevant set of physical symmetries into the abstract representation of the target molecular systems seen
by the QNN. This is known to be crucial already for classical ML methods, where the role of symmetry
preserving features is played, e.g. by the so called symmetry functions [8, 10].

To limit the complexity of the quantum models, in the following we will use a set of internal coordinates,
namely bond distances and angles, which by design respect translational and rotational symmetries. The
integration of more advanced techniques, including fragmentation of large systems into local atomic
environments, the use of other classes of molecular fingerprints and, possibly, the realization of symmetry
adapted quantum circuits all represent natural future extensions of the present work.
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Figure 2. Example of a full encoding map Φ(⃗y) (blue) with single-qubit rotations (green), l= 2 (yellow) and l= 3 interactions
(red) on N= 3 qubits.

We explicitly notice that the conversion between Cartesian and internal coordinates (⃗Iα =W(C⃗α)) must
be taken into account when computing the quantum forces predictions, as these are defined with respect to
the former class (equation (1)). As a result, equations (5) and (6) are more properly rewritten as:

MSE(Energy)=
1

|A|
∑
α∈A

(
fΘ

(
W(C⃗α)

)
− Eα

)2
, (14)

and

MSE(Forces)=
1

3n · |A|
∑
α∈A

∑
c,ai

(
∇I fΘ(⃗Iα) ·

∂W

∂cαai
+ Fα

ai,c

)2
. (15)

2.3. Trainable layers
The parametrized operations Uℓ(θ⃗ℓ) represent the adjustable components of the QNN model. If suitably
optimized during the learning phase, these select the most appropriate mapping from inputs (molecular
coordinates) to outputs (energy and forces).

The precise structure of the Uℓ(θ⃗ℓ) can vary significantly across different models and applications, with
several popular choices known in the literature. For our specific functional regression problem, we follow the
steps of Mitarai et al [34] and make use of a physics-inspired ansatz which is known to generate highly
entangled states. In particular, we consider the following fully connected transverse field Ising Hamiltonian:

H=
N∑
j=1

ajσ
( j)
y +

N∑
j=1

N∑
k=j

Jjkσ
( j)
z σ(k)

z , (16)

and we use the induced time evolution operator U(t) = e−iHt as a template for the trainable layers. By using
the approximate product formula:

e−itH ≈
N∏
j=1

e−itajσ
( j)
y ·

N∏
j=1

N∏
k=j

e−it Jjkσ
( j)
z σ(k)

z , (17)

and by replacing ajt and Jjkt with free parameters, we obtain a unitary operation of the form:

Uℓ(θ⃗ℓ) =
N∏
j=1

e−i
θ
j
ℓ
2 σ( j)

y ·
N∏
j=1

N∏
k=j

e−i
θ
jk
ℓ
2 σ( j)

z σ(k)
z , (18)

where now θ⃗ℓ is the collection of all θ j
ℓ and θ

jk
ℓ . It is easy to see that Uℓ(θ⃗ℓ) can be implemented with

single-qubit Pauli-y rotations and two-qubit ZZ operations, similarly to what happens for the encoding map
Φ defined in the previous section. We stress however that, while the encoding layers are identical across
different reuploading stages, as they repeatedly input the same classical data y⃗, the trainable parameters θ⃗ℓ are
allowed to vary across different layers ℓ= 0, . . . ,D.

For ℓ= 0, we make the special choice θjkℓ = 0 , ∀j,k, namely we only use single-qubit rotations at the
beginning of the computation (see figure 1). Moreover, we empirically find that including generalized l-qubit

interactions up to l= 3, i.e. terms of the form e−i(1/2)θjkmσ
( j)
z σ(k)

z σ(m)
z improves the overall performances of the
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model at the cost of only a modest increase of circuit complexity. The resultingM(⃗x,Θ), as seen in figure 1,
can thus be written as:

M(⃗x,Θ) =

[
1∏

ℓ=D

Uℓ(θ⃗ℓ) ·Φ(W(⃗x))

]
· U0(θ⃗0). (19)

Notice that the product runs from ℓ= D to ℓ= 1 from left to right.

2.4. Model training
We train QNN models by minimizing an average quadratic error that in principle contains both energy and
forces labels, see equation (4). In most instances, we make use of an update rule which follows the negative
gradient direction of the loss function:

Θt+1 =Θt − η∇Lχ(A,Θt), (20)

where η is the learning rate andΘt the set of trainable parameters at the optimization step t. For energy
predictions derived from a quantum circuit, derivatives with respect to any given trainable parameter µ can
be easily computed with the parameter shift rule [51]:

∂EQNNα

∂µ
=

1

2

[
fµ+π

2 ;Θµ
(W(C⃗α))− fµ−π

2 ;Θµ
(W(C⃗α))

]
, (21)

where EQNNα = fΘ
(
W(C⃗α)

)
andΘµ is the set of all trainable parameters without µ. The corresponding result

for the forces predictions is obtained with the iterative parameter shift rule [52], and schematically reads:

∂Fα,QNNai,c

∂µ
=−∂2EQNNα

∂cai∂µ
=−1

4

∑
j

[
fµ+π

2 ;Θµ

(⃗
Iα +

π

2
e⃗j
)

− fµ−π
2 ;Θµ

(⃗
Iα +

π

2
e⃗j
)
− fµ+π

2 ;Θµ

(⃗
Iα − π

2
e⃗j
)

+ fµ−π
2 ;Θµ

(⃗
Iα − π

2
e⃗j
)]

·
∂Iαj
∂cai

, (22)

with (⃗ej)k = δjk the standard basis vectors.
Notice that the parameter shift rule of equation (21) can also be used to retrieve the actual QNN forces

predictions, namely:

Fα,QNNai,c =−∇I fΘ(⃗Iα) ·
∂W

∂cai
=−

∑
j

∂fΘ(⃗Iα)

∂Iαj

∂Iαj
∂cai

. (23)

In this case, factors of the form ∂f/∂Ij must be computed from the quantum circuit, while the chain rule
factors taking into account the classical preprocessing are known analytically and are determined solely by
the mapping functionW.

At the beginning of the training, all free parameters are initialized at zero, so that each hidden layer acts
as the identity operator. This essentially follows the recommendations given in [53] to promote effective
optimization steps in the early training phase.

2.5. Effective dimension
In the remaining part of this work, we will provide a series of examples to demonstrate how QNNmodels are
able to learn and give consistent predictions of PES and FFs for individual molecules. The overall
performances will be assessed primarily through the evaluation of the average root MSE on suitable test sets.

In addition to that, we will also make use of the concept of effective model dimension—originally
introduced in [39]—to inform the comparison with classical counterparts and to investigate potential
advantages. As a brief summary, the effective dimension quantifies the capacity of both classical and
quantum parametrized ML models [54] by measuring the portion of model space that they occupy. In other
words, it estimates the capability of a model in covering the functional space defined by a particular model
class by making a productive use of all its parameters, going beyond naive parameter-counting arguments. A
high effective dimension is therefore related to a richer set of expressible functions and better trainability, as
it can lead to a more favourable landscape for gradient based methods [39]. Moreover, the effective
dimension can sensibly bound the model generalization error [39, 54].
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For a given statistical model y= fΘ(x), the effective dimension is defined as:

dn( fΘ) =

2 log

(
1
VΩ

´
Ω

√
det
(
1+ n

2π lognF(Θ)
)
dΘ

)
log
(

n
2π logn

) , (24)

where Ω⊂ Rd is a d-dimensional parameter space of volume VΩ, n ∈ N is the number of data samples. Here,
we have also introduced the Fisher information matrix:

F= E
[
∇Θ log(p(x,y;Θ)∇Θ log(p(x,y;Θ)

T
]

(25)

≈ 1

K

K∑
k=1

∇ΘfΘ(xk)∇ΘfΘ(xk)
T, (26)

with p(x,y;Θ) = p(y|x;Θ)p(x) and p(y|x;Θ) = exp(−‖y− fΘ(x)‖2/2)/
√
2π being the probability

distribution mass of the model. The effective dimension is bounded by the rank of the Fisher information
matrix and is usually normalized with the total number of parameters d.

3. Results

3.1. Diatomic molecules
3.1.1. Lithium hydride
As a first proof-of-concept, we consider a single LiH molecule and we design a QNN model that learns its
dissociation curve, and the corresponding FF, as a function of the bond length r.

The presence of a single internal coordinate, which is obtained from the Cartesian positions of the Li and
H atoms with a mappingW(C⃗) = |C⃗Li − C⃗H|, makes the problem effectively one dimensional. We construct a
classical dataset by numerically diagonalizing the second quantized Hamiltonian expressed in the STO3G
basis set [41] for different bond lengths r in the range [0.9,4.5] Å. Forces are computed via finite differences
over the exact PES.

To make better use of the Fourier series structure of the QNN, we make the exact PES symmetric by
mirroring it around the r= 4.5 Å and selecting the data set over the extended range, see appendix A.
Furthermore, we use an additional preprocessing step—on top of the Cartesian to internal coordinate
transformation—to construct 3-dimensional features from the original 1D problem. First, we scale all inputs
in [−1,1] with the scikit-learn MinMaxScaler, then we apply the map:

W : [−1,1]→ [−π,π]3

r 7→

 πr
arcsin(r)
arccos(r)

 . (27)

We employ a 3-qubit QNNmodel with D= 10 trainable layers, alternated with the same amount of input
stages. Notice that, even if a single qubit could in principle be used to encode the 1-dimensional problem
under study, we instead choose to engineer 3-dimensional feature vectors from the single independent
internal coordinate available (interatomic distance) to enrich by design the set of expressible functions and to
enable the use of genuine multi-qubit quantum resources such as entanglement. More in general, a very
common choice when using a parametric type of encoding is to use one qubit per feature. However, similarly
to the depth of the model and the overall number of trainable parameters, this is by no means a strict
requirement and could be freely modified, subject to appropriate convergence tests, to improve
performances or in response to additional constraints (e.g. limited number of qubits or finite quantum
coherence). We use a full feature map, as introduced in section 2.2, with l= 3 (see also figure 2), and similar
trainable layers with full entanglement and degree l= 3 interactions. The input of the feature map is
y⃗=W(r), withW as in equation (27) and r the Li-H inter-atomic distance.

We benchmark our model against a fully connected classical NN, which is given access to the same set of
seven engineered inputs and products thereof shown in figure 2. The classical NN is composed of five layers
with [7,4,5,2,1] units using the hyperbolic tangent activation function. Such network topology is chosen
through a random search over all possible configurations with the same number of parameters (identical to
the QNN), selecting the one that achieves the best validation loss.
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Table 1. Validation RMSE for LiH energy (eV) and forces (eVÅ−1), together with the normalized effective dimension (d50/d), the total
number of parameters (d) and the number of training epochs for both the QNN and the classical NN models.

LiH RMSE (E) RMSE (F) d50/d d Epochs

QNN 0.003 0.044 0.9 73 230
NN 0.034 0.21 0.38 73 1600

Figure 3. Prediction of the LiH energy (shifted by−212.8 eV) (a) and force (b) as a function of the inter-atomic distance r. The
exact solution (black line) is compared with the QNN (red dots) and the classical NN (green stars). Insets show an enlarged view
of the energy minimum region.

Both the classical and the QNN models are trained with 4000 steps of the ADAM [55] algorithm on 50
data points using the L0 (χ= 0) loss. We remark that the small size of the classical NN makes it quite
sensitive to parameters initialization, even when using the Glorot and Bengio [56] scheme. Hence, the model
underfits in 65% of the cases and needs 1600 epochs to reach convergence. On the other hand, the QNN
appears to be robust against weights initialization and converges in 230 epochs.

The validation root mean square errors (RMSE) for both models, computed on a test set with 120 data
points, are given in table 1 and the respective predictions are shown in figure 3. We notice that, in this setting,
the QNN outperforms the best classical counterpart with the same number of parameters in terms of
stability and quality of the predictions, and also exhibits a larger effective dimension. Although the classical
model can match the QNN results in absolute terms when its size grows or if the forces are explicitly included
in the loss function (χ 6= 0), the present comparison, supported by the effective dimension analysis, certifies
the competitiveness of the proposed quantum models. In appendix B we also report an example of MD
trajectories driven by the exact and learned FFs.
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Table 2. Validation RMSE for Ar2 energy (eV) and forces (eVÅ−1), together with the normalized effective dimension (d165/d), the total
number of parameters (d) for both the QNN and the classical NN models.

Ar2 RMSE (E) RMSE (F) d165/d d

QNN 2.6× 10−5 0.058 0.77 66
NN 1× 10−4 0.6 0.11 66

3.1.2. Argon dimer
As a second experiment, we consider two Argon atoms separated by a bond length r. This example covers a
richer set of intermolecular interactions, as Ar2 is loosely bounded via Van der Waals forces. The dataset is
constructed using density functional theory (DFT/B3LYP with Grimme D3 corrections as implemented in
Gaussian [57]), and smoothened by fitting to a C1/r12 −C2/r6 function.

The training strategy is almost identical to the LiH case, including the QNN architecture (withD= 9) and
the dataset mirroring. One notable difference is the use of the COBYLA optimizer, which empirically showed
better performance than the ADAM one. The benchmark is performed against a fully connected classical
NN, taking as input the bond length, composed of ten layers with [1,7,4,3,2,5,3,4,2,1] hidden units. The
architecture is chosen with a random search through the models with the same number of parameters as the
QNN and variable number of inputs, selecting the one that achieves the best validation loss.

The validation RMSE for both models, computed on a test set with 120 data points, are given in table 2
and the respective predictions are shown in figure 4. As for the LiH case, we observe that the QNN
outperforms the best classical counterpart with the same number of parameters in terms of stability and
quality of the predictions, and also exhibits a larger effective dimension. Notably, the region around the PES
minimum is better reconstructed with the QNN than the classical NN.

3.2. A single H2Omolecule
We move towards the multi-dimensional case by considering an individual H2Omolecule. For this more
challenging test, we choose 3 internal coordinates, namely the two O–H bond lengths and the H–H
planar angle, which we scale again in [−1,1] and preprocess to create the following 3-dimensional feature
vector:

y⃗=

arcsin(rOH,1)
arcsin(rOH,2)
arcsin(ϕHH)

 , (28)

which is then inputed in the model via the feature map. The classical configurations and the corresponding
energy and forces labels, computed with DFT, are retrieved from [58]. To simplify the problem, we
concentrate on configurations around the equilibrium position, discarding those with bond length outside
[1.6,2.1] Å.

Our QNN model is constructed similarly to the LiH case, with three qubits and a depth of D= 12
encoding and trainable layers. We compare again its results with those of a classical NN model with the same
number of parameters and designed with the same conditions applied in the LiH case presented above.
Furthermore, we also use as a reference the state-of-the-art specialized n2p2 [59] classical package, which
makes full use of symmetry functions and of the sub-network fragmentation idea [8], and from which we
expect peak performance.

More specifically, the simplified classical NN model is a fully-connected 6-layer network with
[7,4,6,2,2,1] units and hyperbolic tangent activation function. Instead, the n2p2 network uses three
sub-networks with two hidden layers, each with 15 units, and hyperbolic tangent activation. This model
takes as input a set of 15 symmetry functions for the Oxygen atom and 20 for the two Hydrogen ones. The
models are trained by minimizing a L1 loss function on 300 data points (1000 for n2p2). Notice that here we
set χ= 1: indeed, as pointed out in [60], it is important to incorporate the forces in the training if we wish to
predict them accurately. However, this makes a full gradient descent computationally very intensive for the
simulation of the quantum model, as it requires the calculation of the circuit Hessian matrix with recursive
parameter shifts (see equation (22)). For this reason, we choose the gradient free optimizer COBYLA for the
present demonstration, while the classical models are trained with the ADAMmethod.

The validation loss results (computed on a test set with 650 data points) are presented in table 3, while
figure 5 shows the predicted energy and forces against the reference data points. The QNN is once again
competitive with respect to classical counterparts, outperforming the non-specialized classical NN and
reporting the largest normalized effective dimension.
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Figure 4. Prediction of the Ar2 energy (shifted by−1.086 eV) (a) and force (b) as a function of the inter-atomic distance r. The
exact solution (black line and crosses) is compared with the QNN (red dots) and the classical NN (green stars). Insets show an
enlarged view of the energy minimum region.

Table 3. Validation RMSE for H2O energy (eV) and forces (eVÅ−1), together with the normalized effective dimension (d300/d) and the
total number of parameters (d) for the QNN and the classical NN and n2p2 models.

H2O RMSE (E) RMSE (F) d300/d d

QNN 0.005 0.06 0.72 87
NN 0.006 0.1 0.25 87
n2p2 7× 10−4 0.01 0.04 1642

3.3. Umbrella motion of hydronium
In our last test, we consider a single hydronium (H3O+) molecule. Following [61], we prepare a training set
by sampling configurations traversed along the inversion pathway shown in figure 6 using DFT-based MD
simulations at 400 K and collecting the corresponding energies and forces. In order to sample the full profile
along the dihedral angle ‘HHHO’ from−0.78 to 0.78 rad, we also applied a dynamical constraint with
increments of 0.005 rad at each MD time step. All calculations were performed with the plane-wave (PW)
code CPMD [62] using unrestricted Kohn–Sham DFT with the PBE functional [63], a PW cutoff of 70 Ry, a
cubic simulation box of edge 14 Å, and Trouiller–Martins pseudo-potentials [64]. For the MD, a time step 10
a.u. (0.242 fs) was used.

We describe each configuration with 6 internal degrees of freedom, namely three O–H bond lengths, two
O–H angles and the dihedral angle formed by the four atoms (see appendix C for the formal definitions).
The internal coordinates are preprocessed with the functionW(·) = arcsin(·) and loaded in the model via
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Figure 5. Predicted H2O energy (a) and forces (b) from the QNN (red crosses), the generic NN (green crosses) and the n2p2 (blue
crosses) models compared to reference DFT data points (black line).

the feature map, see appendix D. We also make use of the explicit formulas for derivatives with respect to
Cartesian coordinates provided in [65].

A 6-qubit QNN model is constructed with D= 10 repetitions of the encoding map and the trainable
layers, both with linear entanglement and order l= 3 interactions. The latter are also placed with linear
couplings across all neighbouring 3-qubit groups. Due to the complexity of the system and the high
computational cost, we only include energy labels in the training set, leaving a more refined study of the
forces for future investigations. Hence, we train the model by minimizing a L0 loss on 500 data points
(9000 for n2p2) with 5000 steps of the ADAM algorithm.

As in the previous examples, we compare the QNN model with a classical NN, whose topology is
optimized under the constraint that the number of trainable parameters be the same of the QNN,
and with a n2p2-build model. In this case, the classical NN has [6, 14, 2, 1] units, while the n2p2 NN is
composed of four sub-networks, each one with a structure similar to the case if the H2Omolecule in
section 3.2.

The RMSE results for a test set with 500 data points are reported in table 4, and energy predictions are
also depicted in figure 6. Here, the QNN model is still competitive with respect to the generic classical NN,
although both of then are clearly outperformed by the specialized and much larger n2p2 model. It is also
worth noticing that forces predictions are much worse than energy ones, which confirms the necessity of
including them in the loss function to achieve good results in non-trivial systems.
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Figure 6. Predicted H3O+ energy (shifted by−474.45 (eV)) from the QNN (red), the generic classical NN (green) and the n2p2
(blue) models as a function of the dihedral angle (a) and compared to the reference DFT energy (b). The molecule is represented
at the two energy minima where the oxygen atom sits above or below the plane formed by the hydrogen ones, and at the saddle
point where the oxygen and hydrogen atoms are co-planar.

Table 4. Validation RMSE for H3O+ energy (eV) and forces (eVÅ−1), together with the normalized effective dimension (d500/d) and
the total number of parameters (d) for the QNN and the classical NN and n2p2 models.

H3O
+ RMSE (E) RMSE (F) d500/d d

QNN 3.7× 10−3 0.26 0.67 135
NN 4.2× 10−3 0.207 0.19 135
n2p2 5× 10−4 0.19 0.03 2214

4. Conclusions

In this work we have successfully demonstrated the systematic application of QML techniques, and
specifically parametrized QNN, to the problem of learning molecular PES from classical ab initio data sets
and for the generation of molecular FFs. In all our numerical simulations, the proposed QNNmodels already
achieved competitive performances with respect to comparable classical ones, reporting good prediction
accuracy for several paradigmatic single-molecule examples.

The present assessment naturally opens several questions and future research directions. On the one
hand, the design of more specialized QNN architectures and molecular descriptors would allow a more
refined and effective treatment of the problem, including the possibility of tackling bulk materials. For
example, classical state-of-the-art implementations [59] crucially benefit from the fragmentation of large
systems in local environments and corresponding sub-networks [8]. Similar techniques could possibly be
engineered for QNNs, e.g. by resorting to more general perceptron-based models [30, 31]. These could
explicitly be partitioned into local components and entangling connections between different sub-networks
could eventually be realized. In addition to that, the development of efficient quantum gradient estimation
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protocols, which currently represents one of the main algorithmic bottlenecks, will be crucial for larger scale
implementations of the proposed methods and for an adequate treatment of forces. It is also worth
mentioning that another viable alternative may be represented by quantum kernel methods [49], whose
classical counterparts are already extensively used in the context of ML potentials [9], for example in
combination with Coulomb matrix descriptors [11].

On the other hand, the most interesting open questions concern the potential quantum advantages
brought by QML approaches. In this work, we focused on the problem of learning from classical data and we
observed, following [39], that suitably designed QNNmodels exhibit a larger effective dimension than their
classical equivalents. This in turn relates to stable and fast training capabilities, and points toward a more
effective handling of larger systems. Indeed, large normalized effective dimensions signal, in the spirit of
capacity measures, an effective use of the available model parameters, thus suggesting that quantum models
could represent economic and manageable tools to tackle large molecular simulations.

At the same time, this analysis does not yet take into account the role of overparametrization, which is
known to contribute in a crucial way to the performances of classical NN. In fact, our numerical experiments
confirm that large classical models, such as the ones employed in sections 3.2 and 3.3, still achieve the best
prediction and generalization accuracy. Interestingly, while the normalized effective dimension of those
classical models is quite small, the absolute effective dimension is actually comparable to the one of their
direct quantum counterpart, thus hinting at some form of ‘computational phase transition’ in their
behaviour [66–68]. A few similar observations have already been made for QML models [68, 69], and a
thorough exploration of QNNs capabilities in such highly overparametrized regime—including, among
others, the question of whether this could be realized in a more effective way or with different qualitative
behaviours compared to classical models—represents an interesting open research direction in general. We
leave a complete analysis of its application in the context of NNPs for future investigations.

On a larger perspective, one may also envisage the use of QML methods on quantum data [20, 29, 70]
retrieved from experiments or quantum chemistry simulations, e.g. in the form of quantum wavefunctions
generated through variational [41, 71] or dynamical methods. The extraction of physical/chemical properties
and the classification of materials directly at the quantum level of description could then likely represent one
of the most advanced and exploratory efforts in the quest for quantum advantage with QML.
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Appendix A. Mirroring

As we recalled in the main text, QNN models introduced in equation (2) can be expressed as partial Fourier
Series [44]:

fΘ(x) =
∑
n∈Ω

cne
inx, (A1)

where Ω is the set of available frequencies and depends exclusively on the encoding map, while the
coefficients cn are determined by the trainable unitary gates and the observable. QNNs of this form become
universal functional approximators in the limit |Ω| →∞. In practice, we make use of the Fourier series
interpretation of QNNs and of Fourier analysis to guide model design, for example by changing model
complexity (in our case essentially determined by the depth D for fixed qubit number) to control the number
of available frequencies.

13

https://www.ibm.com/legal/copytrade


Mach. Learn.: Sci. Technol. 3 (2022) 035004 O Kiss et al

Figure 7. LiH data set (blue) and the corresponding mirrored extension (red).

In simple proof-of-principle experiments, such as LiH, we can also compare the model spectrum with
the one of the data, although this is may not be possible in general. We also empirically find that better
performances are obtained for periodic data sets, which intuitively correspond to finite frequencies spectra
and hence reduce spurious oscillations in the final solution. We apply this intuition to the 1-dimensional LiH
and Ar2 case, whose PES can be artificially made periodic by mirroring around r= 4.5 Å, (for LiH) and
r= 6.3 Å (for Ar2) as shown in figure 7.

Appendix B. LiH—molecular dynamics

The motivation behind both quantum and classical NNPs is ultimately to provide computationally effective
access to highly accurate FFs to drive MD. In this section, we provide a first demonstration of a quantum
NNP used to simulate the oscillations of a LiH molecule around its equilibrium position. We use the Velocity
Verlet algorithm [72] to compute the time evolution of inter-atomic distance and velocity, starting from
some given initial conditions. At each point, the forces are predicted with the trained QNN presented in
section 3.1. For comparison, we also present results obtained with the classical NNP introduced in
section 3.1 of the main text.

We start with the atoms at rest and close to each other, with an initial inter-atomic distance of 1.05 Å, and
let the system evolve according to Netwon’s equations. The time evolution of the inter-atomic distance is
shown in figure 8(a), where we compare the results obtained with classical and quantum NNPs to the exact
solution obtained numerically. To assess the overall quality of the trajectories, we compute the frequency
spectrum of the oscillations with a Fourier transform, which we apply to an evolution of 0.6 fs, repeated 1000
times and passed through an Hamming window. As reported in figure 8(b), the quantum and classical
models can accurately reproduce the dominant frequencies.

Appendix C. H3O+—internal coordinates

A hydronium molecule has 6= 4× 3− 6 degrees of freedom. To describe its configurations, we used three
bond lengths (rOH,1, rOH,2 and rOH,3), two angles (ϕH,1OH,2 and ϕH,1OH,3) and one dihedral angle (dOH,3H,2H,1).
We used the following definition for the dihedral angle with atoms (ijkl):

dijkl = sign(χ)arccos
(⃗rij × r⃗kj) · (⃗rkj × r⃗kl)

|⃗rij × r⃗kj| · |⃗rkj × r⃗kl|
(C1)

χ= r⃗kj · (⃗rij × r⃗kj)× (⃗rkj × r⃗kl), (C2)

where r⃗ij is the distance vector between atom i and j. The above definitions and the formulas for their
gradients can be found in [65].

Appendix D. Explicit QNN construction

In this section we show the explicit construction of the QNN in the case of a H2Omolecule. The data x⃗
consist of three Euclidean coordinates for each of the three atoms, leading to nine features per individual
configuration. However, by taking into account the planar structure of the molecule, as well as rotation and
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Figure 8.Molecular dynamics of a LiH molecule with initial conditions x0 = 1.05 (Å) and v0 = 0 (at.u.). The exact solution
(blue) is compared to the classical NNP (green) and to the quantum NNP (red) ones.

translation symmetries, we can define a set of three independent internal coordinates. We choose them as the
two O–H bond lengths and the H–H planar angle,

x⃗=

rOH,1

rOH,2

ϕHH

 , (D1)

which we scale in [−1,1] and preprocess to create the following 3-dimensional feature vector:

y⃗=W(⃗x) =

arcsin(rOH,1)

arcsin(rOH,2)
arcsin(ϕHH)

≡

y1
y2
y3

 . (D2)

For each data point in the training set and for any fixed value of the trainable parametersΘ during the model
learning process, we compute the QNN output, defined as (see equation (2)):

fΘ(⃗y) = 〈0|M(⃗y,Θ)†OM(⃗y,Θ)|0〉, (D3)

by executing the corresponding quantum circuit and measuring the expectation value ofO. As discussed in
the main text, see section 2.1, the QNN model unitaryM(⃗y,Θ) is constructed as a repetition of trainable and
data encoding layers. The feature map is chosen as:

Φ(⃗y) = E (⃗y)S (⃗y), (D4)

where S (⃗y) is a collection of single-qubit Pauli-y rotations:

S (⃗y) =
3∏

j=1

exp

(
−i

σ
( j)
y

2
yj

)
, (D5)
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and E (⃗y) is an entangling operation. Here, σ(i)
k (k= x,y,z) correspond to Pauli matrices:

σx =

(
0 1
1 0

)
, (D6)

σy =

(
0 −i
i 0

)
, (D7)

σz =

(
1 0
0 −1

)
, (D8)

acting on the ith qubit, i.e.

σ(i)
y = 1⊗ ·· ·1⊗︸ ︷︷ ︸

i−1 times

σy ⊗1⊗ ·· ·1︸ ︷︷ ︸
N−i times

. (D9)

Notice that equation (D5) is written explicitly for the 3-qubit model that was used for H2O, and it
corresponds to the first set of operations highlighted in green in figure 2. As explained in section 3.2, we then
used a full feature map with an order l= 3 interaction, i.e.

E (⃗y) =
N−1∏
j=1

N∏
k=j+1

exp
(
−iσ( j)

z σ(k)
z

yjyk
2

)
︸ ︷︷ ︸

full l=2 interaction

·
N−2∏
j=1

N−1∏
k=j+1

N∏
m=k+1

exp
(
−iσ( j)

z σ(k)
z σ(m)

z

yjykym
2

)
︸ ︷︷ ︸

full l=3 interaction

, (D10)

as explicitly depicted in the quantum circuit of figure 2 for N = 3. In particular, the order l= 2 operations
(yellow in figure 2) are decomposed as:

exp
(
−iσ( j)

z σ(k)
z

yjyk
2

)
= CXj,kR

(k)
z (yjyk)CXj,k, (D11)

while l= 3 ones (red in figure 2) read:

exp
(
−iσ( j)

z σ(k)
z σ(m)

z

yjykym
2

)
= CXj,kCXk,mR

(m)
z (yjykym)CXk,mCXj,k, (D12)

here, R(m)
z (·) = e−i(·)σ(m)

z /2 is a z-rotation on qubitm, and CXj,k denotes a CNOT [21] operation between
qubits j and k.

The trainable layers follow the same structure, except the data entries of the form yj, yjyk and yjykym are
replaced with distinct parameters θm, wherem is an index assigned to each trainable gate.

ORCID iDs

Oriel Kiss https://orcid.org/0000-0001-7461-3342
Francesco Tacchino https://orcid.org/0000-0003-2008-5956
Sofia Vallecorsa https://orcid.org/0000-0002-7003-5765
Ivano Tavernelli https://orcid.org/0000-0001-5690-1981

References

[1] Alder B J and Wainwright T E 1959 J. Chem. Phys. 31 459–66
[2] McCammon J A, Gelin B R and Karplus M 1977 Nature 267 585–90
[3] Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471–4
[4] Marx D and Hutter J 2009 Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge: Cambridge University

Press)
[5] Unke O T, Koner D, Patra S, Käser S and Meuwly M 2020Mach. Learn.: Sci. Technol. 1 013001
[6] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L and Zdeborová L 2019 Rev. Mod. Phys. 91 045002
[7] Pfau D, Spencer J S, Matthews A G D G and Foulkes WM C 2020 Phys. Rev. Res. 2 033429

16

https://orcid.org/0000-0001-7461-3342
https://orcid.org/0000-0001-7461-3342
https://orcid.org/0000-0003-2008-5956
https://orcid.org/0000-0003-2008-5956
https://orcid.org/0000-0002-7003-5765
https://orcid.org/0000-0002-7003-5765
https://orcid.org/0000-0001-5690-1981
https://orcid.org/0000-0001-5690-1981
https://doi.org/10.1063/1.1730376
https://doi.org/10.1063/1.1730376
https://doi.org/10.1038/267585a0
https://doi.org/10.1038/267585a0
https://doi.org/10.1103/PhysRevLett.55.2471
https://doi.org/10.1103/PhysRevLett.55.2471
https://doi.org/10.1088/2632-2153/ab5922
https://doi.org/10.1088/2632-2153/ab5922
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/PhysRevResearch.2.033429
https://doi.org/10.1103/PhysRevResearch.2.033429


Mach. Learn.: Sci. Technol. 3 (2022) 035004 O Kiss et al

[8] Behler J and Parrinello M 2007 Phys. Rev. Lett. 98 146401
[9] Behler J 2016 J. Chem. Phys. 145 170901
[10] Behler J 2011 J. Chem. Phys. 134 074106
[11] Rupp M, Tkatchenko A, Müller K-R and von Lilienfeld O A 2012 Phys. Rev. Lett. 108 058301
[12] Morawietz T, Singraber A, Dellago C and Behler J 2016 Proc. Natl Acad. Sci. 113 8368–73
[13] Gastegger M, Schwiedrzik L, Bittermann M, Berzsenyi F and Marquetand P 2018 J. Chem. Phys. 148 241709
[14] Imbalzano G, Anelli A, Giofré D, Klees S, Behler J and Ceriotti M 2018 J. Chem. Phys. 148 241730
[15] Unke O T, Chmiela S, Sauceda H E, Gastegger M, Poltavsky I, Schütt K T, Tkatchenko A and Müller K-R 2021 Chem. Rev.

121 10142–86
[16] Cheng B, Mazzola G, Pickard C J and Ceriotti M 2020 Nature 585 217–20
[17] Singraber A, Behler J and Dellago C 2019 J. Chem. Theory Comput. 15 1827–40
[18] Singraber A, Morawietz T, Behler J and Dellago C 2019 J. Chem. Theory Comput. 15 3075–92
[19] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Nature 549 195–202
[20] Huang H Y et al 2021 Quantum advantage in learning from experiments (arXiv:2112.00778)
[21] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge:

Cambridge University Press)
[22] Schuld M and Petruccione F 2021Machine Learning with Quantum Computers (Cham: Springer)
[23] Huang H-Y, Broughton M, Mohseni M, Babbush R, Boixo S, Neven H and McClean J R 2021 Nat. Commun. 12 2631
[24] Huang H Y, Kueng R, Torlai G, Albert V V and Preskill J 2021 Provably efficient machine learning for quantum many-body

problems (arXiv:2106.12627)
[25] Schuld M, Sinayskiy I and Petruccione F 2015 Phys. Lett. A 379 660–3
[26] Cao Y, Guerreschi G G and Aspuru-Guzik A 2017 Quantum neuron: an elementary building block for machine learning on

quantum computers (arXiv:1711.11240)
[27] Torrontegui E and Garcia-Ripoll J J 2019 Europhys. Lett. 125 030004
[28] Tacchino F, Macchiavello C, Gerace D and Bajoni D 2019 npj Quantum Inf. 5 26
[29] Cong I, Choi S and Lukin M D 2019 Nat. Phys. 15 1273–8
[30] Tacchino F, Barkoutsos P, Macchiavello C, Tavernelli I, Gerace D and Bajoni D 2020 Quantum Sci. Technol. 5 044010
[31] Beer K, Bondarenko D, Farrelly T, Osborne T J, Salzmann R, Scheiermann D and Wolf R 2020 Nat. Commun. 11 808
[32] Mangini S, Tacchino F, Gerace D, Macchiavello C and Bajoni D 2020Mach. Learn.: Sci. Technol. 1 045008
[33] Mangini S, Tacchino F, Gerace D, Bajoni D and Macchiavello C 2021 Europhys. Lett. 134 10002
[34] Mitarai K, Negoro M, Kitagawa M and Fujii K 2018 Phys. Rev. A 98 032309
[35] Benedetti M, Lloyd E, Sack S and Fiorentini M 2019 Quantum Sci. Technol. 4 043001
[36] Schuld M, Bocharov A, Svore K M and Wiebe N 2020 Phys. Rev. A 101 032308
[37] Cerezo M et al 2021 Nat. Rev. Phys. 3 625–44
[38] Tacchino F, Mangini S, Barkoutsos P K, Macchiavello C, Gerace D, Tavernelli I and Bajoni D 2021 IEEE Trans. Quantum Eng.

2 3101110
[39] Abbas A, Sutter D, Zoufal C, Lucchi A, Figalli A and Woerner S 2021 Nat. Comput. Sci. 1 403–9
[40] Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love P J, Aspuru-Guzik A and O’Brien J L 2014 Nat. Commun.

5 4213
[41] Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M and Gambetta J M 2017 Nature 549 242–6
[42] Sokolov I O, Barkoutsos P K, Moeller L, Suchsland P, Mazzola G and Tavernelli I 2021 Phys. Rev. Res. 3 013125
[43] Xia R and Kais S 2020 Entropy 22 828
[44] Schuld M, Sweke R and Meyer J J 2021 Phys. Rev. A 103 032430
[45] Pérez-Salinas A, Cervera-Lierta A, Gil-Fuster E and Latorre J I 2020 Quantum 4 226
[46] Gil Vidal F J and Theis D O 2020 Front. Phys. 8 297
[47] Jerbi S, Fiderer L J, Nautrup H P, Kübler J M, Briegel H J and Dunjko V 2021 Quantum machine learning beyond kernel methods

(arXiv:2110.13162)
[48] Gastegger M and Marquetand P 2020Molecular Dynamics with Neural Network Potentials (Cham: Springer International

Publishing) pp 233–52
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