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The emergence of a collective behavior in a many-body system is responsible of the quantum
criticality separating different phases of matter. Interacting spin systems in a magnetic field offer
a tantalizing opportunity to test different approaches to study quantum phase transitions. In this
work, we exploit the new resources offered by quantum algorithms to detect the quantum critical
behaviour of fully connected spin−1/2 models. We define a suitable Hamiltonian depending on
an internal anisotropy parameter γ, that allows us to examine three paradigmatic examples of
spin models, whose lattice is a fully connected graph. We propose a method based on variational
algorithms run on superconducting transmon qubits to detect the critical behavior for systems of
finite size. We evaluate the energy gap between the first excited state and the ground state, the
magnetization along the easy-axis of the system, and the spin-spin correlations. We finally report
a discussion about the feasibility of scaling such approach on a real quantum device for a system
having a dimension such that classical simulations start requiring significant resources.

I. INTRODUCTION

The abrupt change of the system properties during a
phase transition has always paved the way to the ad-
vancement of our understanding of nature in both funda-
mental and applied aspects. The phase transition mech-
anism, in the limit of an infinite number of particle com-
posing the system, has been successfully addressed within
the formalism of the renormalization group [1, 2]. Quan-
tum phase transitions are the cornerstone of a great va-
riety of groundbreaking theories ranging from the Higgs
mechanism for mass generation in high-energy physics
[3, 4], to the superfluid and superconducting phase of
matters in low-energy physics [5, 6], and nowadays their
exploitation is getting attention also in the context of
quantum technologies [7, 8].

Given a Hamiltonian H(~λ), describing a system consti-
tuted by N interacting particle, it exhibits a continuous
(or second order) quantum phase transition, whether in
the limit N → ∞, the gap between the ground state
energy and that of the first excited state vanishes for a
certain value of the internal parameters ~λ. This value
corresponds to the critical point of the model and, in
contrast to any classical model, it can also exist for zero
temperature [9, 10]. Nevertheless, assuming a diverging
number of particle is well motivated and substantiated.
The relaxation of such assumption prompts the study of
finite-size corrections to such transition [11, 12] that can
show unprecedented results [13–15]. With abuse of nota-
tion we write that a quantum phase transition occurs in
a system with finite N , whenever for a value of ~λ, a cross-
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ing between the energies of the ground state and the first
excited level is observed. This is in contrast to what one
would expect by a semi-classical approach in which the
finite size is responsible to suppress the symmetry break-
ing mechanism associated with the second-order phase
transition [11, 16].

For our purposes, we consider the Lipkin-Meshkov-
Glick (LMG) model, a fermionic model that served as
testbed for many-body approximations in different fields
[17–19]. Due to the possibility of mapping this model into
a N spin−1/2 system, we will study its criticality with
current quantum computation techniques on real Noisy-
Intermediate-Scale Quantum (NISQ) devices. Criticality
of quantum system requires an exponential number of
degrees of freedom that makes the problem quickly in-
tractable. The advancement of machine learning tech-
niques has been of paramount importance for the deter-
mination of macroscopic phases of matter and efficient
quantum state representation.

With the advent of quantum techniques in machine
learning, phase diagram of different systems have been
obtained, such as a cluster Ising or the Bose-Hubbard
model at zero temperature. The former uses a super-
vised learning approach where the states are classified
according to classical labels using a quantum convolu-
tional neural network [20, 21] while the latter discovers
the phases in an unsupervised way using anomaly de-
tection [22]. The intersection between machine learning
and quantum techniques applied to physical systems is
rapidly increasing, not only obtaining information about
critical point of a system is pursued but also general dy-
namical simulations are important testbeds. In [23] the
authors rigorously analyze the requirements of an algo-
rithm in terms of training data and define generalization
bounds for their effective execution on current quantum
device. For an overview of the state of the art and future
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perspectives for quantum simulation, looking at possible
quantum advantage in specific applications we refer to
[24].

The remainder of this manuscript is structured as fol-
lows: in Sec.II we introduce the LMG Hamiltonian of
our critical system, then we provide a short but compre-
hensive introduction to the variational quantum eigen-
solver technique. Then we focus on the definition of the
ansatz in terms of design and trainability and we termi-
nate the section providing an overview of the adopted er-
ror mitigation techniques, with ad-hoc consideration for
the specific Hamiltonian. In Sec III, we substantiate our
approach showing simulated results obtained under ideal
condition with quantum simulator as well as evidences
collected on real quantum device. In Sec. IV, we provide
a numerical interpretation and analytical derivation of
higher order excited states for the LMG model, as well
as their realisation with the variational algorithm. Fi-
nally in Sec. V, we summarise the outcomes of this work,
discussing the quality of the results with an estimation
about the actual feasibility of studying proposed models-
like on NISQ devices.

II. METHODS

In this section we introduce the Hamiltonian of a LMG
critical system and its behaviour in the thermodynamic
limit. Moreover, we review also the quantum computa-
tional techniques that we employ to assess the critical
behavior of the system.

A. The Lipkin-Meshkov-Glick Model

The LMG model was introduced in [17–19] to describe
a system of N fermions, whose state space is made of
two degenerate shells with two fixed energy levels. Each
shell has degeneracy N and can accommodate all of the
N particles, thus resulting in a total of a 2N -dimensional
state space. Via a Jordan-Wigner transformation, the
LMG model can be mapped into a system of interacting
spins. Moreover, in the thermodynamic limit N → ∞,
it is solvable via a two-boson Holstein Primakoff trans-
formation [25]. This peculiarity made it one of the most
used model to understand many problems of interest in
physics, from nuclear to condensed-matter physics.

Considering that we will study our model on qubit-
based quantum computers, it is natural and convenient
to use the following expression for the LMG Hamiltonian:

H = − 1

N

N∑
i<j

σixσ
j
x + γσiyσ

j
y −B

N∑
i=1

σiz. (1)

This Hamiltonian describes a system of N spins in a fully
connected planar graph, immersed in a transverse mag-
netic field B. The first sum in Eq.(1) accounts for an

anisotropic interaction in the x − y plane that couples
each spin with all the other ones with the same strength,
an archetype and exemplary version of any long-range in-
teraction. Different coupling strengths along the two pla-
nar direction are taken into account via the anisotropy
parameter 0 ≤ γ ≤ 1. From physical perspective, this
type of Hamiltonian has been implemented on various
platforms [26–29] to design feasible quantum technolo-
gies applications [30–34].

The system is known to be critical and shows, in the
thermodynamic limit, a second order phase transition be-
tween a broken-symmetry (disordered) phase for B < 1
and an ordered phase for B ≥ 1, with a critical value
of the external magnetic field B = Bc = 1. Usually, the
Lipkin model is used to denote a limiting and easily di-
agonalizable case of the LMG model [35]. Introducing
the set of collective-spin operators Sα = 1

2

∑N
i=1 σ

i
α, and

setting γ = 1 in Eq.(1), we have:

H = − 2

N
(S2 − S2

z )− 2BSz. (2)

The Hamiltonian in Eq.(2) is diagonal in the Dicke ba-
sis |j,m〉 formed by the simultaneous eigenvectors of
S2 |j,m〉 = j(j + 1) |j,m〉 and Sz |j,m〉 = m |j,m〉. Due
to the fact that the interaction term commutes with the
free energy term, the Lipkin model with γ = 1 belongs
to a different universality class of the general model de-
scribed by the Hamiltonian in Eq.(2), see [25]. In partic-
ular, it has been shown to belong to the same class of the
superradiant Dicke model [36]. Within our formalism,
we can also address the criticality of the fully-connected
Ising model imposing γ = 0. This model presents, in the
thermodynamical limit, a quantum phase transition due
the spontaneous breaking of the Z2 symmetry [37].

The phase diagram of this model at zero temperature
was derived in [38], thanks to a two-boson Schwinger bo-
son realization of the SU(1, 1) Richardson–Gaudin inte-
grable models. However, classifying phase transitions in
systems having finite number of elements is a challeng-
ing and an open problem. In particular, in the quantum
domain, the curse of dimensionality of the exponentially
growing size of the Hilbert space for the considered sys-
tems impacts strongly the performance of classical tech-
niques.

We will study the precursors of the quantum phase
transition for the finite size LMG model via quantum
computational techniques. With abuse of notation, we
will call the values of the magnetic field B and of the
anisotropy γ, for which the ground state and the first
excited state of the system are degenerate, critical values.

The adopted strategy can be easily extended to other
critical systems, but the choice of the LMG model to test
our approach is driven by two reasons. On one side, the
model is of interest for several communities and it has
been used to test many-body approximations [25, 39].
The expression in Eq.(1), in terms of Pauli operators,
makes the implementation on a superconducting quan-
tum processor quite straightforward and requires less
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physical resources compared with its fermionic formula-
tion. On the other side, the model has some peculiari-
ties, namely anisotropy and long-range interaction, that
makes it a non trivial model where to assess quantum
criticality at finite-size.

B. Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE), pro-
posed by Peruzzo et al. [40], is a variational quantum
algorithm [41] used to find the ground state of a Hamil-
tonian H by using the Rayleigh-Ritz variational princi-
ple. Concretely, a parametrized wavefunction |ψ(θ)〉 [42]
is prepared on a quantum computer and its parameters
updated to minimize the energy

E0 ≤
〈ψ(θ)|H |ψ(θ)〉
〈ψ(θ)|ψ(θ)〉

. (3)

The VQE has been widely applied in quantum chem-
istry [43–46], nuclear physics [47–49] and in spin systems
[50–56].

The design of the wavefunction ansatz is of importance
for the trainability and accuracy of the results and is an
active area of research. Some systems, typically writ-
ten in the second quantisation formalism, allow physi-
cally motivated ansätze, for instance based on unitary
coupled cluster [43, 48]. However, the quantum circuits
used in this setting are usually deep, require an increased
connectivity, and are therefore difficult to implement on
near term quantum devices. On the other hand, hard-
ware efficient ansatz [44] are tailored to the device and
are consequently shallow enough to minimize the effects
of noise and decoherence. More recently, the ADAPT-
VQE [57], which builds the ansatz by iteratively adding
a term from an operator pool bringing the best improve-
ment, has been proposed as a way to build optimal cir-
cuits. Even if the picking action can be implemented in a
parallel fashion, it can be expensive for current devices,
time and resources-wise. Consequently, we will focus on
fixed hardware efficient ansätze, which are constructed
with single qubit rotations around the y-axis, and CNOT
interactions with linear connectivity.

The VQE can be extended to compute excited states
as well. The method adopted here is the one proposed by
Higgott et al. [58], called variational quantum deflation
(VQD), which first computes the ground state and then
looks for the state minimizing the energy while being
orthogonal to the, previously determined, ground state.
This procedure can be generalize for the k-th excited
state in an iterative fashion. In practice, the following
loss function is minimized:

F (θk) = 〈ψ(θk)|H |ψ(θk)〉+
k−1∑
i=0

βi 〈ψ(θk)|ψ(θi)〉 , (4)

where we assume, for simplicity, that the states are nor-
malized. The wavefunction |ψ(θi)〉 corresponds to the

Figure 1. Hardware efficient ansatz, composed of Ry(θ) ro-
tations and CNOTs between neighboring qubits executed in
parallel.

i-th excited state, and βi hyperparameters to be tuned.
It has been shown [58], that βi has to be greater than the
energy gap between the states i and i+ 1 to ensure that
the wavefunction converges to the correct excited state.
Additional techniques, based on the quantum equation
of motion [59], using a discriminator [60] or constrain-
ing the ansatz around the state of interest [61] have been
proposed in the literature but will not be considered here.

C. Ansatz

We use a simple hardware efficient ansatz [44], which
can be run on NISQ devices without an overhead due
to circuit transpilation. For instance, we use D repeti-
tions of a layer consisting of free rotations around the
y-axis Ry(θ) = e−iθσy/2, where σy is the y Pauli matrix,
CNOT gates with linear connectivity and a final rotation
layer before the measurements. Since the depth of the
circuits grows as O(N) due to the linear entanglement,
this ansatz fails on hardware when performing error mit-
igation based on noise scaling. We therefore adapt the
ansatz to grow as O(1), by applying the CNOT gates in
parallel, on the two following groups of qubits

{(i, i+ 1) for i even},
{(i, i+ 1) for i odd},

thus considerably reducing the depth of the circuits. We
observe a small decrease in the accuracy on the simulator
compared to the linear entanglement scheme, but an in-
crease on the hardware due to the depth’s reduction. We
choose the minimal case D = 1, as depicted in Figure 1,
when running on hardware, while pushing for maximal
performance on the simulator by allowing larger D.
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D. Error Mitigation

Error mitigation methods are used to diminish the ef-
fect of the hardware noise on the results. Unlike error cor-
rection, these strategies are used in the post-processing
steps on the raw data. Two complementary techniques,
measurement error mitigation (MEM) and zero noise ex-
trapolation (ZNE), are used to mitigate the readout and
two-qubit gate errors, respectively.

For MEM, we follow Nation et al. [62] and individually
invert the error matrices

Mk =

(
P

(k)
0,0 P

(k)
0,1

P
(k)
1,0 P

(k)
1,1

)
(5)

and used them to calibrate the samples. Here, P (k)
i,j is

the probability of the k-th qubit to be in state j ∈ {0, 1}
while measured in state i ∈ {0, 1}. The probabilities of
measuring 0 or 1

~Sk =

(
P0

P1

)
(6)

obtained by measuring the k-th qubit are corrected as
follow

~Skcorrected = (Mk)−1~Sk. (7)

While this only corrects uncorrelated readout errors, it is
argued in Ref. [62] that they are the predominant ones.
Moreover, this strategy can be scaled for arbitrary num-
ber of qubits and only has a O(1) overhead in the number
of circuit execution.

In the ZNE [63, 64] scheme, the CNOT noise is arti-
ficially stretched and the results are then extrapolated
to the noiseless regime. More precisely, the energy
is estimated multiples time for different scaling factor
k ∈ {1, 2}, and then a fit is performed to extrapolate up
to the k = 0 value. In practice, the noise is stretched by
replacing every CNOT in the circuit, by 2k − 1 CNOT
gates. The 2k − 2 additional CNOTs cancel each other,
leaving the circuit unchanged. However, by adding bar-
riers between them, preventing the CNOTs to be can-
celled in the transpilation phase, the noise is artificially
stretched. Richardson [65] originally used a linear fit for
the extrapolation, however, the considerable effect of the
noise in NISQ devices increases the risk of overshooting.
Consequently, an exponential fit f(x) = aebx is instead
used, where a and b ∈ R are fitted to the energies E us-
ing least-square regression. To improve the results, E is
scaled before the fit

E 7→ E − s
s

(8)

and scaled back afterwards, with s being an estimate of
the exact energy.

It is important to make sure that the total runtime of
the noise-scaled circuits does not exceed the coherence

time of the device, which would destroy any useful in-
formation. For instance, we only considered k = 1 and
k = 2, since for higher k the results were not reliable
anymore. Also the ansatz definition plays an important
role, as described in sec.II C. With the construction of
Figure 1, the CNOT gates can be run in parallel, thus
shortening the runtime significantly. This can be done
using additional qubits available on the device to run all
the noise-scaled circuits in parallel, reducing the total
number of circuit execution.

III. RESULTS

This section presents the numerical results obtained
in this work. Sec. III A contains the ground and first
excited state energy and magnetization for N = 4, 5, 6
spins and different values of γ and B obtained on stat-
evector simulations and analyse their behaviour in the
anisotropic and isotropic case. Sec. III B shows the
ground state energy and magnetization for N = 5 spins,
γ = 0.49 and different values of B computed on super-
conducting transmon qubits, and comments on the scal-
ability of the VQE in the near term.

A. Noiseless VQE Simulations

For a small number of spins N , the classical approach
of the diagonalization of H is straightforward. Defining
the spectrum of the Hamiltonian H |ψn〉 = E0 |ψn〉 with
n = {0, ..., 2N−1}, multiple crossing points between the
energies of the ground and the first excited state (E0

and E1, respectively) are found for the following critical
values

BkC =
N − k
N

√
γ, (9)

for a fixed γ, k ≤ N and odd [39]. Hence, the ground
state energy can be recasted in N/2 + 1 phases, if N
is even, or in (N − 1)/2 + 1 otherwise. Introducing
the ground-state magnetization along the model easy-
axis 〈Sz〉 = 〈ψ0(B, γ)|Sz |ψ0(B, γ)〉, we can observe
that for any nonanalytic point holds limB→Bk−

C
〈Sz〉 6=

limB→Bk+
C
〈Sz〉 ∀B(k)

C . In the following, we will denote
|ψ0〉 ≡ |ψGS〉 and |ψ1〉 ≡ |ψ1st〉 .

We use statevector simulations, as a theoretical tool
to explore more complex ansatz and increase the perfor-
mance as much as possible. We choose the depth of the
ansatz as a function of the system size, namely D = N .
This differs from the results obtained on real hardware,
as explained in Sec. II C. The training is performed with
the SLSQP optimizer [66] with 2000 maximum iterations.
Adiabatic computing is applied to speed up the calcu-
lations and improve the accuracy, following the recom-
mendation of Harwood et al. [67]. The excited states are
found using a VQD-like algorithm. Using the statevector



5

Figure 2. Ground and first excited state energies for 4 spins
at γ = 0.81 obtained with classical diagonalization and VQE
using statevector and QASM without noise. VQE results are
represented by crosses, exact diagonalization by a solid line,
while dotted lines show crossing points. The inset shows result
obtained with different number of shots, where the error bar
correspond to one standard deviation.

given by the solution of the Hamiltonian it is possible to
redefine a new effective Hamiltonian

H ′ = H + β0 |ψGS〉 〈ψGS | . (10)

When the superposition between |ψ1st〉 found by using
VQE on H ′ and |ψGS〉 is small the loss function associ-
ated to this Hamiltonian reduces to Eq.(4) with k = 1.
We found this to be true every time the β0 is set greater
than the energy gap between the ground and first excited
state, as specified in Sec.II B. Knowing that transitions
happen for B = BkC , see Eq.(9), we choose five points
between the transition points and the chosen bounds.
Starting from the upper bound, where the energy gap is
wider, the ground state energy and the first excited en-
ergy are evaluated using random initial parameters. For
each point in the interval, in decreasing order, the opti-
mal point found in the previous step are chosen as initial
parameters. Moreover, for the next interval, the optimal
parameters for the ground state are used as initial point
as well for the first excited state. This technique signifi-
cantly speeds up the simulation, improves the quality of
the results, and allows us to compute the energies for sys-
tems up to N = 10 spins, using statevector simulations.

Figure 2 shows the ground and first excited state en-
ergy for a LMG Hamiltonian with N = 4 spins for the
specific value of γ = 0.81, as a function of the magnetic
field B. The VQE is compared to the exact diagonal-
ization (black solid lines), while the VQE points are ob-
tained using statevector simulation (crosses) as well as
shoots-based probabilistic output without hardware noise
contribution (dots). Another figure of merit to assess a
quantum phase transition for finite-size systems is the
energy difference between the first excited state and the
ground state, namely E1st − EGS (to which we will re-
fer to as the gap, for shorthand of notation). The gap
as a function of the magnetic field is shown in Figure

Figure 3. First excited state and ground state energy differ-
ence for N = 5 at γ = 0.36, 0.81. VQE results are represented
by crosses, exact diagonalization by a solid line, while dotted
lines show crossing points.

Figure 4. First excited state and ground state energy differ-
ence at γ = 0.49 for N = 4, 5, 6. VQE results are represented
by crosses, exact diagonalization by a solid line, while dotted
lines show crossing points.

3 for N = 5 spins and two values of γ, γ = 0.36, 0.81.
Even if they are far from the extreme values 0, 1 they
already underline a difference in the behaviour, at least
for B < 0.6. Similar considerations hold as a function of
the system size, shown in Figure 4 for N = 4, 5, 6 with
γ = 0.49. In both cases, the energy gap rapidly explodes
after B ≥ 0.6. Finally, we consider the extreme cases
of the fully-connected Ising model and the Lipkin-Dicke
model, for γ = {0, 1} respectively. We report our results
in Figure 5, together with an intermediate γ value of 0.49,
where the system size is fixed to N = 5. The energy gap
between the first excited state and the ground state is
shown in (a), while the correlation function along x

〈
S2
x

〉
in (b) and 〈Sz〉 in (c). We observe the oscillatory trend
of the energy gap for γ = 1 as opposed to the mono-
tonic trend of the isotropic case (γ = 0). A completely
different behaviour can be appreciated also for the two
magnetization observable, where the anisotropic model is
characterised by a stepwise trend as opposed to the con-
tinuous one for γ = 0, signaling how the three models in
the thermodynamical limit belong to distinct universality
classes.
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Figure 5. Ground state energy (GS) and first excited state energy (1st) gap (a),
〈
S2
x

〉
(b), and 〈Sz〉 (c), for N = 5 spins at

γ = 0, 0.49, 1 values. VQE results are represented by crosses, exact diagonalization by a solid line, while dotted lines show
crossing points.

Figure 6. Topology of the superconducting quantum device
ibmq_kolkata with readout and CNOT error rate. Image
taken from the IBM Q Lab.

B. Runs on the Real Devices.

1. Experimental Device

The quantum device used in this work consists of
27 fixed-frequency transmons qubits, with fundamental
transition frequencies of approximately 5 GHz and anhar-
monicities of −340 MHz, with the same topology as dis-
played in Figure 6. Microwave pulses are used for single-
qubit gates and cross-resonance interaction [68] for two-
qubit gates. The experiments took place over 1 month,
but each different computation took place over span of
five hours, without intermediate calibration, with the use
of Qiskit Runtime. The median qubit lifetime T1 of the
qubits is 121 and 129 µs, the median coherence time T2
is 90 and 135 µs and the median readout and CNOT
error is 0.014 and 0.045 respectively. The SABRE [69]
algorithm is used for the transpilation to the quantum
hardware.

2. Small System Size

We begin by computing the ground state energy of
a system with N = 5 spins and γ = 0.49 for different
values of the magnetic field B. We use the hardware ef-
ficient ansatz with D = 1 repetition, as shown in Figure
1. As a warm initialization, the ansatz is first trained on
the noiseless simulator, and the optimal parameters are
used as an educated guess for the initial parameters. The
training is composed of maximum 100 steps, or until con-
vergence, with the SPSA [70] optimizer using a learning
rate of 0.005 for the first 30 steps and 0.001 afterwards,
using 8092 shots. The graphs are obtained with 32000
shots and statistics are collected from 5 distinct runs.
Measurement error mitigation and zero noise extrapo-
lation are performed to enhance the results, which are
shown in Figure 7. The line correspond to the exact di-
agonalization, the black dots to the noiseless simulation
with 32000 shots, the blue crosses to the raw results and
the red ones to the mitigated energies. The error bars
correspond to the 99.5 % confidence interval. The inset
shows the effect of the error mitigation on a specific point.
The k = 1 point correspond to the original circuit while
k = 2 to the dilated case, where every CNOT is replaced
with 3 CNOTs. The cross shows a scaled exponential
fit while the triangle a linear one. As motivated in Sec.
IID, the linear fit overshoots the true ground state en-
ergy, while this is not the case for the scaled exponential
fit.

We observe that the ground state energy is reproduced
with less than 1% error ratio everywhere, suggesting that
the quality of current devices is good enough for such
tasks. However, the computed magnetization observables
are not equally accurate. The explanation is two folds:
first, we observe that the noiseless simulations are also
less precise than the energy calculations, more particu-
larly for

〈
S2
x

〉
at large magnetic field. This is essentially

caused by the ansatz which is too shallow to represent
the true ground state, but instead is only a good approx-
imation with similar energy. But more importantly, there
is a discrepancy between the noiseless and real hardware
results, which is due to overfitting to the hardware noise.
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Figure 7. Ground state energy (GS) (a), and magnetization
〈
S2
x

〉
(b), and 〈Sz〉 (c), for N = 5 spins at γ = 0.49 values. Points

are obtained on the superconducting device ibmq_kolkata with (red) and without (blue) error mitigation compared to noiseless
simulation (black) and exact values (line). The inset shows the extrapolation to the zero noise regime, both with an exponential
and linear fit.

Hence, when the ansatz is fine tuned on the real device,
the noise is assimilated to minimze the energy. By doing
so, we get closer to the true energy, but drift from the
true ground state. Hence, the ansatz is good to repro-
duce the energy, but does not represent the true ground
state.

3. Large System Size

Finally, we tried to extend the reach of VQE to sizes
where simulations are unavailable due to the exponen-
tial scaling of the Hilbert space. Even if density-matrix
renormalization group (DMRG) [71] techniques are able
to compute the ground state energy for large number of
spins (∼ 102), we choose N = 20 since it is already out
of reach for our simulators in a reasonable time. This
problem is more interesting than the previous case since
we are unable to start from a set of previously trained
parameters. However, these calculations are also more
challenging for current devices for the following reasons.
Gradient-free optimizers, such as SPSA, require small
amount of circuit executions to estimate the gradient.
However, since they rely on finite difference techniques,
the gradient is strongly affected by the noise and can
lead to erratic path in the optimization landscape. On
the other hand, analytical gradients provided by the pa-
rameter-shift rule [72] are more reliable, but also more
expensive to compute since they require 2 · d circuit exe-
cutions, where d is the number of parameters (d = 40 in
this case). We estimate to more than one hour runtime
per optimizer step, accounting for ZNE and MEM error
mitigation techniques, which is more than what we can
reasonably draw from on a shared device and without
running into further recalibration problems.

IV. HIGHER EXCITED STATES

The VQE can be used to compute the energies of the
second and third excited states as well. Figures 8 and

Figure 8. Excited states energy for N = 4 and γ = 1. Solid
lines are for classical results, dotted lines for crossing points.

Figure 9. Excited states energy distribution for N = 4 and
γ = 0.67. Solid lines are for classical results, dotted lines for
crossing points.

9 show the eight lowest energy eigenvalues for a system
of N = 4 spins, as a function of the magnetic field B
at two different interaction configurations γ = {1, 0.67},
respectively. The simulations are performed using stat-
evector and superimposed to exact diagonalization. For
γ = 0.67, VQE seems at first to fail in computing the
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3rd excited state, but actually find degenerate states. To
better understand the degeneracy, let us consider γ = 1
and use Eq. 2 to obtain

H |j,m〉 =
[
−1

2
(j(j +1)−m2 − 2)− 2Bm

]
|j,m〉 . (11)

For N = 4 spins, j = 0, 1, 2, leading to 9 distinct degen-
erate values for the energies of the 16 eigenstates. The
first degenerate eigenvalue for B < 1

4 , is the one with
the j = 1, m = 1 quantum numbers. However, it be-
comes the fourth excited for 1

4 < B < 1
2 , the third for

1
2 < B < 5

4 , and finally the second for B greater than 5
4 .

Numerical investigations suggest an analogous behaviour
for γ 6= 1 and 0 < γ . 2. In the region B . 5

4

√
γ, the first

eigenvalue to be degenerate is the third excited while in
B & 5

4

√
γ, it is the second excited. Hence, VQE actually

shows in Figure 9 that for B ≈ 1.2, the third eigenvalue
is degenerate (3 times, in particular). The numerical in-
vestigations for γ = 1 show that the degenerate levels
are

• 3-fold: j = 1, m ∈ {0,±1},

• 2-fold: j = 0, m = 0,

in agreement with [36]. A similar argument can be ad-
dressed also to justify the behaviour of the energies of
the excited states for the model with γ 6= 1 as those
observed in Figure 9. However, the impossibility to di-
agonalize the two terms of the Hamiltonian in a common
basis would make the argument only less intuitive and
more cumbersome.

V. DISCUSSION AND OUTLOOKS

The advent of reliable quantum hardware, although
not yet fault-tolerant, has paved the way to novel tech-
niques to tackle problems from different research areas.
A natural avenue of research is the one that incorporates
the quantum computing techniques to understand the
physics of complex systems as many-body systems. To
this end, we have proposed a way to exploit the varia-
tional quantum eigensolver, and the algorithms stemmed
from it, for studying the finite-size criticality of paradig-
matic spin models. Upon introducing a Hamiltonian with
an anisotropic interaction γ in the x − y plane we have
studied the level crossings between the ground-state and
the first-excited state in the proper LMG (0 < γ < 1) and

in the two limit cases: the fully connected Ising model
(γ = 0) and the Lipkin-Dicke model γ = 1. We used as
figure of merit some relevant magnetic observables, i.e.,
the magnetization along the field direction and the spin-
spin correlation along the x−axis.

Due to the geometry of the system, no lenght scale
of the correlation can be defined, this makes the fully-
connected spin models interesting systems to look for
unconventional results at finite-size [25, 39] or to give
a quantitative evaluation of the quality of a new compu-
tational or experimental technique [26, 30, 35]. Recently,
several papers [52–55] addressed the Lipkin model on a
quantum computer to question whether techniques and
methods proper of quantum machine learning can be em-
ployed in nuclear physics. In general, the authors rely on
system size of relatively small dimensions N ≤ 4 per-
forming a preliminary noiseless analysis for the isotropic
model that can be analytically solved exactly.

Our analysis is complementary to those previously car-
ried out and go into the direction of employing quantum
algorithms to have a direct insight on problems of rele-
vance in statistical physics. In fact, we have shown that
the VQE is a powerful tool to assess the quantum phase
transition of critical systems of finite-size. We have also
addressed how to mitigate the errors present when em-
ploying NISQ devices and how it is feasible on a real
hardware based on superconducting transmon qubits.

As final remark and open question we surmise that our
method could be employed in future, when better per-
forming hardware, with more qubits will be available, as
a benchmark for the renormalization group approaches
used to study the finite-size scaling behaviour of quanti-
ties of interest in statistical and condensed matter theory.

ACKNOWLEDGMENTS

AM is supported by Foundation for Polish Sci-
ence (FNP), IRAP project ICTQT, contract no.
2018/MAB/5, co-financed by EU Smart Growth Oper-
ational Programme, and (Polish) National Science Cen-
ter (NCN), MINIATURA DEC-2020/04/X/ST2/01794.
MG and OK are supported by CERN Quantum Technol-
ogy Initiative.

Access to the IBM Quantum Services was obtained
through the IBM Quantum Hub at CERN. The views
expressed are those of the authors and do not reflect the
official policy or position of IBM or the IBM Q team.

[1] Jean Zinn-Justin, Phase transitions and renormalization
group (Oxford University Press on Demand, 2007).

[2] Andrea Pelissetto and Ettore Vicari, “Critical phenom-
ena and renormalization-group theory,” Physics Reports
368, 549–727 (2002).

[3] F. Englert and R. Brout, “Broken symmetry and the mass

of gauge vector mesons,” Phys. Rev. Lett. 13, 321–323
(1964).

[4] Peter W. Higgs, “Broken symmetries and the masses of
gauge bosons,” Phys. Rev. Lett. 13, 508–509 (1964).

[5] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory
of superconductivity,” Phys. Rev. 108, 1175–1204 (1957).

http://dx.doi.org/ 10.1103/PhysRevLett.13.321
http://dx.doi.org/ 10.1103/PhysRevLett.13.321
http://dx.doi.org/ 10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRev.108.1175


9

[6] David R Tilley and John Tilley, Superfluidity and super-
conductivity (Routledge, 2019).

[7] Luigi Amico, Rosario Fazio, Andreas Osterloh, and
Vlatko Vedral, “Entanglement in many-body systems,”
Rev. Mod. Phys. 80, 517–576 (2008).

[8] Florian Schäfer, Takeshi Fukuhara, Seiji Sugawa, Yosuke
Takasu, and Yoshiro Takahashi, “Tools for quantum sim-
ulation with ultracold atoms in optical lattices,” Nature
Reviews Physics 2, 411–425 (2020).

[9] Subir Sachdev, Quantum Phase Transitions, 2nd ed.
(Cambridge University Press, 2011).

[10] S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Sha-
har, “Continuous quantum phase transitions,” Rev. Mod.
Phys. 69, 315–333 (1997).

[11] Michael E. Fisher and Michael N. Barber, “Scaling theory
for finite-size effects in the critical region,” Phys. Rev.
Lett. 28, 1516–1519 (1972).

[12] E Brézin and Jean Zinn-Justin, “Finite size effects in
phase transitions,” Nuclear Physics B 257, 867–893
(1985).

[13] Andreas Osterloh, Luigi Amico, Giuseppe Falci, and
Rosario Fazio, “Scaling of entanglement close to a quan-
tum phase transition,” Nature 416, 608–610 (2002).

[14] Zhangqi Zhu, Gaoyong Sun, Wen-Long You, and Da-
Ning Shi, “Fidelity and criticality of a quantum ising
chain with long-range interactions,” Phys. Rev. A 98,
023607 (2018).

[15] Myung-Joong Hwang and Martin B. Plenio, “Quantum
phase transition in the finite jaynes-cummings lattice sys-
tems,” Phys. Rev. Lett. 117, 123602 (2016).

[16] R. Botet and R. Jullien, “Large-size critical behavior of
infinitely coordinated systems,” Phys. Rev. B 28, 3955–
3967 (1983).

[17] Harry J Lipkin, N Meshkov, and AJ Glick, “Valid-
ity of many-body approximation methods for a solvable
model:(i). exact solutions and perturbation theory,” Nu-
clear Physics 62, 188–198 (1965).

[18] N Meshkov, AJ Glick, and HJ Lipkin, “Validity of many-
body approximation methods for a solvable model:(ii).
linearization procedures,” Nuclear Physics 62, 199–210
(1965).

[19] AJ Glick, HJ Lipkin, and N Meshkov, “Validity of many-
body approximation methods for a solvable model:(iii).
diagram summations,” Nuclear Physics 62, 211–224
(1965).

[20] Iris Cong, Soonwon Choi, and Mikhail D. Lukin, “Quan-
tum convolutional neural networks,” Nat. Phys. 15,
1273–1278 (2019).

[21] Johannes Herrmann, Sergi Masot Llima, Ants Remm,
Petr Zapletal, Nathan A. McMahon, Colin Scarato,
François Swiadek, Christian Kraglund Andersen,
Christoph Hellings, Sebastian Krinner, Nathan Lacroix,
Stefania Lazar, Michael Kerschbaum, Dante Colao
Zanuz, Graham J. Norris, Michael J. Hartmann, Andreas
Wallraff, and Christopher Eichler, “Realizing quantum
convolutional neural networks on a superconducting
quantum processor to recognize quantum phases,” Nat
Commun 13 (2022), https://doi.org/10.1038/s41467-
022-31679-5.

[22] Korbinian Kottmann, Friederike Metz, Joana Fraxanet,
and Niccolò Baldelli, “Variational quantum anomaly de-
tection: Unsupervised mapping of phase diagrams on
a physical quantum computer,” Phys. Rev. Research 3,
043184 (2021).

[23] Joe Gibbs, Zoe Holmes, Matthias C. Caro, Nicholas
Ezzell, Hsin-Yuan Huang, Lukasz Cincio, Andrew T.
Sornborger, and Patrick J. Coles, “Dynamical simulation
via quantum machine learning with provable generaliza-
tion,” (2022), 10.48550/ARXIV.2204.10269.

[24] Andrew Daley, Immanuel Bloch, Christian Kokail, Stu-
art Flannigan, Natalie Pearson, Matthias Troyer, and
Peter Zoller, “Practical quantum advantage in quantum
simulation,” Nature 607, 667–676 (2022).

[25] Sébastien Dusuel and Julien Vidal, “Continuous unitary
transformations and finite-size scaling exponents in the
Lipkin-Meshkov-Glick model,” Phys. Rev. B 71, 224420
(2005).

[26] J. I. Cirac, M. Lewenstein, K. Mølmer, and P. Zoller,
“Quantum superposition states of Bose-Einstein conden-
sates,” Phys. Rev. A 57, 1208–1218 (1998).

[27] D. A. Garanin, X. Martínez Hidalgo, and E. M. Chud-
novsky, “Quantum-classical transition of the escape rate
of a uniaxial spin system in an arbitrarily directed field,”
Phys. Rev. B 57, 13639–13654 (1998).

[28] Octavio Castaños, Ramón López-Peña, Jorge G. Hirsch,
and Enrique López-Moreno, “Classical and quantum
phase transitions in the Lipkin-Meshkov-Glick model,”
Phys. Rev. B 74, 104118 (2006).

[29] Jian Ma and Xiaoguang Wang, “Fisher information
and spin squeezing in the Lipkin-Meshkov-Glick model,”
Phys. Rev. A 80, 012318 (2009).

[30] Julien Vidal, Guillaume Palacios, and Claude Aslangul,
“Entanglement dynamics in the Lipkin-Meshkov-Glick
model,” Phys. Rev. A 70, 062304 (2004).

[31] Sébastien Dusuel and Julien Vidal, “Finite-size scaling
exponents of the Lipkin-Meshkov-Glick model,” Phys.
Rev. Lett. 93, 237204 (2004).

[32] Pedro Ribeiro, Julien Vidal, and Rémy Mosseri, “Exact
spectrum of the Lipkin-Meshkov-Glick model in the ther-
modynamic limit and finite-size corrections,” Phys. Rev.
E 78, 021106 (2008).

[33] Giulio Salvatori, Antonio Mandarino, and Matteo G. A.
Paris, “Quantum metrology in Lipkin-Meshkov-Glick
critical systems,” Phys. Rev. A 90, 022111 (2014).

[34] Antonio Mandarino, Karl Joulain, Melisa Domínguez
Gómez, and Bruno Bellomo, “Thermal transistor effect
in quantum systems,” Phys. Rev. Applied 16, 034026
(2021).

[35] D Agassi, HJ Lipkin, and N Meshkov, “Validity of many-
body approximation methods for a solvable model:(iv).
the deformed hartree-fock solution,” Nuclear Physics 86,
321–331 (1966).

[36] R. H. Dicke, “Coherence in spontaneous radiation pro-
cesses,” Phys. Rev. 93, 99–110 (1954).

[37] Arnab Das, K. Sengupta, Diptiman Sen, and Bikas K.
Chakrabarti, “Infinite-range ising ferromagnet in a time-
dependent transverse magnetic field: Quench and ac dy-
namics near the quantum critical point,” Phys. Rev. B
74, 144423 (2006).

[38] S. Lerma H. and J. Dukelsky, “The Lip-
kin–Meshkov–Glick model as a particular limit of
the su(1,1) Richardson–Gaudin integrable models,”
Nuclear Physics B 870, 421–443 (2013).

[39] Gang Chen and JQ Liang, “Unconventional quantum
phase transition in the finite-size Lipkin–Meshkov–Glick
model,” New Journal of Physics 8, 297 (2006).

[40] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-
Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-

http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1017/CBO9780511973765
http://dx.doi.org/10.1103/RevModPhys.69.315
http://dx.doi.org/10.1103/RevModPhys.69.315
http://dx.doi.org/10.1103/PhysRevLett.28.1516
http://dx.doi.org/10.1103/PhysRevLett.28.1516
http://dx.doi.org/ 10.1103/PhysRevA.98.023607
http://dx.doi.org/ 10.1103/PhysRevA.98.023607
http://dx.doi.org/10.1103/PhysRevLett.117.123602
http://dx.doi.org/ 10.1103/PhysRevB.28.3955
http://dx.doi.org/ 10.1103/PhysRevB.28.3955
http://dx.doi.org/https://doi.org/10.1038/s41567-019-0648-8
http://dx.doi.org/https://doi.org/10.1038/s41567-019-0648-8
http://dx.doi.org/https://doi.org/10.1038/s41467-022-31679-5
http://dx.doi.org/https://doi.org/10.1038/s41467-022-31679-5
http://dx.doi.org/https://doi.org/10.1038/s41467-022-31679-5
http://dx.doi.org/ 10.1103/PhysRevResearch.3.043184
http://dx.doi.org/ 10.1103/PhysRevResearch.3.043184
http://dx.doi.org/ 10.48550/ARXIV.2204.10269
http://dx.doi.org/10.1038/s41586-022-04940-6
http://dx.doi.org/ 10.1103/PhysRevB.71.224420
http://dx.doi.org/ 10.1103/PhysRevB.71.224420
http://dx.doi.org/10.1103/PhysRevA.57.1208
http://dx.doi.org/10.1103/PhysRevB.57.13639
http://dx.doi.org/10.1103/PhysRevB.74.104118
http://dx.doi.org/10.1103/PhysRevA.80.012318
http://dx.doi.org/ 10.1103/PhysRevA.70.062304
http://dx.doi.org/10.1103/PhysRevLett.93.237204
http://dx.doi.org/10.1103/PhysRevLett.93.237204
http://dx.doi.org/10.1103/PhysRevE.78.021106
http://dx.doi.org/10.1103/PhysRevE.78.021106
http://dx.doi.org/10.1103/PhysRevA.90.022111
http://dx.doi.org/ 10.1103/PhysRevApplied.16.034026
http://dx.doi.org/ 10.1103/PhysRevApplied.16.034026
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/ 10.1103/PhysRevB.74.144423
http://dx.doi.org/ 10.1103/PhysRevB.74.144423
http://dx.doi.org/ https://doi.org/10.1016/j.nuclphysb.2013.01.019


10

Guzik, and Jeremy L. O’Brien, “A variational eigenvalue
solver on a photonic quantum processor,” Nature Com-
munications 5, 4123 (2014).

[41] Jarrod R McClean, Jonathan Romero, Ryan Babbush,
and Alán Aspuru-Guzik, “The theory of variational
hybrid quantum-classical algorithms,” New Journal of
Physics 18, 023023 (2016).

[42] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mat-
tia Fiorentini, “Parameterized quantum circuits as ma-
chine learning models,” Quantum Science and Technol-
ogy 4, 4 (2019).

[43] Jonathan Romero, Ryan Babbush, Jarrod R McClean,
Cornelius Hempel, Peter J Love, and Alán Aspuru-
Guzik, “Strategies for quantum computing molecular en-
ergies using the unitary coupled cluster ansatz,” Quan-
tum Sci. Technol. 4, 014008 (2019).

[44] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme,
Maika Takita, Markus Brink, Jerry M. Chow, and
Jay M. Gambetta, “Hardware-efficient variational quan-
tum eigensolver for small molecules and quantum mag-
nets,” Nature 549, 242–246 (2017).

[45] Luca Crippa, Francesco Tacchino, Mario Chizzini,
Antonello Aita, Michele Grossi, Alessandro Chiesa,
Paolo Santini, Ivano Tavernelli, and Stefano Car-
retta, “Simulating static and dynamic properties of
magnetic molecules with prototype quantum comput-
ers,” Magnetochemistry 7 (2021), 10.3390/magneto-
chemistry7080117.

[46] Panagiotis Kl. Barkoutsos, Jerome F. Gonthier, Igor
Sokolov, Nikolaj Moll, Gian Salis, Andreas Fuhrer, Marc
Ganzhorn, Daniel J. Egger, Matthias Troyer, Anto-
nio Mezzacapo, Stefan Filipp, and Ivano Tavernelli,
“Quantum algorithms for electronic structure calcula-
tions: Particle-hole hamiltonian and optimized wave-
function expansions,” Phys. Rev. A 98, 022322 (2018).

[47] E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R.
Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D. J.
Dean, and P. Lougovski, “Cloud quantum computing of
an atomic nucleus,” Phys. Rev. Lett. 120, 210501 (2018).

[48] I. Stetcu, A. Baroni, and J. Carlson, “Variational ap-
proaches to constructing the many-body nuclear ground
state for quantum computing,” Phys. Rev. C 105, 064308
(2022).

[49] Oriel Kiss, Michele Grossi, Pavel Lougovski, Fed-
erico Sanchez, Sofia Vallecorsa, and Thomas Papen-
brock, “Quantum computing of the 6li nucleus via or-
dered unitary coupled cluster,” ArXiv e-prints (2022),
arXiv:2205.00864 [nucl-th].

[50] Alexey Uvarov, Jacob D. Biamonte, and Dmitry Yudin,
“Variational quantum eigensolver for frustrated quantum
systems,” Phys. Rev. B 102, 075104 (2020).

[51] Maxime Dupont and Joel E. Moore, “Quantum criticality
using a superconducting quantum processor,” Phys. Rev.
B 106, L041109 (2022).

[52] Michael J. Cervia, A. B. Balantekin, S. N. Coppersmith,
Calvin W. Johnson, Peter J. Love, C. Poole, K. Robbins,
and M. Saffman, “Lipkin model on a quantum computer,”
Phys. Rev. C 104, 024305 (2021).

[53] Kenneth Robbins and Peter J. Love, “Benchmarking
near-term quantum devices with the variational quan-
tum eigensolver and the Lipkin-Meshkov-Glick model,”
Phys. Rev. A 104, 022412 (2021).

[54] Asahi Chikaoka and Haozhao Liang, “Quantum comput-
ing for the Lipkin model with unitary coupled cluster and

structure learning ansatz,” Chinese Physics C 46, 024106
(2022).

[55] A. M. Romero, J. Engel, Ho Lun Tang, and Sophia E.
Economou, “Solving nuclear structure problems with the
adaptive variational quantum algorithm,” Phys. Rev. C
105, 064317 (2022).

[56] Manqoba Q. Hlatshwayo, Yinu Zhang, Herlik Wibowo,
Ryan LaRose, Denis Lacroix, and Elena Litvinova, “Sim-
ulating excited states of the Lipkin model on a quantum
computer,” (2022), arXiv:2203.01478 [nucl-th].

[57] Harper R. Grimsley, Sophia E. Economou, Edwin
Barnes, and Nicholas J. Mayhall, “An adaptive vari-
ational algorithm for exact molecular simulations on a
quantum computer,” Nat Commun 10, 3007 (2019).

[58] Oscar Higgott, Daochen Wang, and Stephen Brierley,
“Variational quantum computation of excited states,”
Quantum 3, 156 (2019).

[59] Pauline J. Ollitrault, Abhinav Kandala, Chun-Fu Chen,
Panagiotis Kl. Barkoutsos, Antonio Mezzacapo, Marco
Pistoia, Sarah Sheldon, Stefan Woerner, Jay M. Gam-
betta, and Ivano Tavernelli, “Quantum equation of mo-
tion for computing molecular excitation energies on a
noisy quantum processor,” Phys. Rev. Research 2, 043140
(2020).

[60] Jules Tilly, Glenn Jones, Hongxiang Chen, Leonard
Wossnig, and Edward Grant, “Computation of molecu-
lar excited states on ibm quantum computers using a dis-
criminative variational quantum eigensolver,” Phys. Rev.
A 102, 062425 (2020).

[61] Ken M. Nakanishi, Kosuke Mitarai, and Keisuke Fujii,
“Subspace-search variational quantum eigensolver for ex-
cited states,” Phys. Rev. Research 1, 033062 (2019).

[62] Paul D. Nation, Hwajung Kang, Neereja Sundaresan,
and Jay M. Gambetta, “Scalable mitigation of measure-
ment errors on quantum computers,” PRX Quantum 2,
040326 (2021).

[63] Andre He, Benjamin Nachman, Wibe A. de Jong,
and Christian W. Bauer, “Zero-noise extrapolation for
quantum-gate error mitigation with identity insertions,”
Phys. Rev. A 102, 012426 (2020).

[64] Abhinav Kandala, Kristan Temme, Antonio D. Córcoles,
Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gam-
betta, “Error mitigation extends the computational reach
of a noisy quantum processor,” Nature 567, 491–495
(2019).

[65] Lewis Fry Richardson, “The approximate arithmetical so-
lution by finite differences of physical problems involving
differential equations, with an application to the stresses
in a masonry dam,” Philosophical Transactions of the
Royal Society of London, Series A, Containing Papers
of a Mathematical or Physical Character 202, 307–357
(1911).

[66] D. Kraft, A Software Package for Sequential Quadratic
Programming , Deutsche Forschungs- und Versuch-
sanstalt für Luft- und Raumfahrt Köln: Forschungs-
bericht (Wiss. Berichtswesen d. DFVLR, 1988).

[67] Stuart M. Harwood, Dimitar Trenev, Spencer T. Sto-
ber, Panagiotis Barkoutsos, Tanvi P. Gujarati, Sarah
Mostame, and Donny Greenberg, “Improving the vari-
ational quantum eigensolver using variational adiabatic
quantum computing,” ACM Transactions on Quantum
Computing 3 (2022), 10.1145/3479197.

[68] Jerry M. Chow, A. D. Córcoles, Jay M. Gambetta, Chad
Rigetti, B. R. Johnson, John A. Smolin, J. R. Rozen,

http://dx.doi.org/ https://doi.org/10.1038/ncomms5213
http://dx.doi.org/ https://doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1088/1367-2630/18/2/023023
http://dx.doi.org/10.1088/1367-2630/18/2/023023
http://dx.doi.org/10.1088/2058-9565/ab4eb5
http://dx.doi.org/10.1088/2058-9565/ab4eb5
http://dx.doi.org/10.1088/2058-9565/aad3e4
http://dx.doi.org/10.1088/2058-9565/aad3e4
http://dx.doi.org/ https://doi.org/10.1038/nature23879
http://dx.doi.org/ 10.3390/magnetochemistry7080117
http://dx.doi.org/ 10.3390/magnetochemistry7080117
http://dx.doi.org/10.1103/PhysRevA.98.022322
http://dx.doi.org/10.1103/PhysRevLett.120.210501
http://dx.doi.org/10.1103/PhysRevC.105.064308
http://dx.doi.org/10.1103/PhysRevC.105.064308
http://arxiv.org/abs/2205.00864
http://dx.doi.org/ 10.1103/PhysRevB.102.075104
http://dx.doi.org/ 10.1103/PhysRevB.106.L041109
http://dx.doi.org/ 10.1103/PhysRevB.106.L041109
http://dx.doi.org/10.1103/PhysRevC.104.024305
http://dx.doi.org/ 10.1103/PhysRevA.104.022412
http://dx.doi.org/10.1088/1674-1137/ac380a
http://dx.doi.org/10.1088/1674-1137/ac380a
http://dx.doi.org/ 10.1103/PhysRevC.105.064317
http://dx.doi.org/ 10.1103/PhysRevC.105.064317
http://arxiv.org/abs/2203.01478
http://dx.doi.org/ https://doi.org/10.1038/s41467-019-10988-2
http://dx.doi.org/ https://doi.org/10.22331/q-2019-07-01-156
http://dx.doi.org/ 10.1103/PhysRevResearch.2.043140
http://dx.doi.org/ 10.1103/PhysRevResearch.2.043140
http://dx.doi.org/10.1103/PhysRevA.102.062425
http://dx.doi.org/10.1103/PhysRevA.102.062425
http://dx.doi.org/ 10.1103/PhysRevResearch.1.033062
http://dx.doi.org/ 10.1103/PRXQuantum.2.040326
http://dx.doi.org/ 10.1103/PRXQuantum.2.040326
http://dx.doi.org/ 10.1103/PhysRevA.102.012426
http://dx.doi.org/https://doi.org/10.1038/s41586-019-1040-7
http://dx.doi.org/https://doi.org/10.1038/s41586-019-1040-7
http://dx.doi.org/ http://doi.org/10.1098/rsta.1911.0009
http://dx.doi.org/ http://doi.org/10.1098/rsta.1911.0009
http://dx.doi.org/ http://doi.org/10.1098/rsta.1911.0009
http://dx.doi.org/ http://doi.org/10.1098/rsta.1911.0009
https://books.google.co.uk/books?id=4rKaGwAACAAJ
https://books.google.co.uk/books?id=4rKaGwAACAAJ
http://dx.doi.org/10.1145/3479197
http://dx.doi.org/10.1145/3479197


11

George A. Keefe, Mary B. Rothwell, Mark B. Ketchen,
and M. Steffen, “Simple all-microwave entangling gate
for fixed-frequency superconducting qubits,” Phys. Rev.
Lett. 107, 080502 (2011).

[69] Gushu Li, Yufei Ding, and Yuan Xie, “Tackling the
qubit mapping problem for nisq-era quantum devices,”
in Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’19 (Association
for Computing Machinery, New York, NY, USA, 2019) p.
1001–1014.

[70] J.C. Spall, “Implementation of the simultaneous per-
turbation algorithm for stochastic optimization,” IEEE
Transactions on Aerospace and Electronic Systems 34,
817–823 (1998).

[71] U. Schollwöck, “The density-matrix renormalization
group,” Rev. Mod. Phys. 77, 259–315 (2005).

[72] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh
Izaac, and Nathan Killoran, “Evaluating analytic gra-
dients on quantum hardware,” Phys. Rev. A 99, 032331
(2019).

http://dx.doi.org/ 10.1103/PhysRevLett.107.080502
http://dx.doi.org/ 10.1103/PhysRevLett.107.080502
http://dx.doi.org/10.1145/3297858.3304023
http://dx.doi.org/10.1145/3297858.3304023
http://dx.doi.org/10.1145/3297858.3304023
http://dx.doi.org/10.1109/7.705889
http://dx.doi.org/10.1109/7.705889
http://dx.doi.org/10.1109/7.705889
http://dx.doi.org/ 10.1103/RevModPhys.77.259
http://dx.doi.org/ 10.1103/PhysRevA.99.032331
http://dx.doi.org/ 10.1103/PhysRevA.99.032331

	Finite-size criticality in fully connected spin models on superconducting quantum hardware
	Abstract
	I Introduction
	II Methods
	A The Lipkin-Meshkov-Glick Model
	B Variational Quantum Eigensolver
	C Ansatz
	D Error Mitigation

	III Results
	A Noiseless VQE Simulations
	B Runs on the Real Devices.
	1 Experimental Device
	2 Small System Size
	3 Large System Size


	IV Higher excited states
	V Discussion and Outlooks
	 Acknowledgments
	 References


