
Resource Saving via Ensemble Techniques for

Quantum Neural Networks

Massimiliano Incudini1,*, Michele Grossi2, Andrea Ceschini3,
Antonio Mandarino4, Massimo Panella3, Sofia Vallecorsa2, and

David Windridge5

1Dipartimento di Informatica, Università di Verona, Strada Le
Grazie, 15, Verona, 37134, Italy

2European Organization for Nuclear Research (CERN), Espl. des
Particules, 1, Meyrin, 1211, Switzerland

3Dipartimento di Ingegneria dell’Informazione, Elettronica e
Telecomunicazioni (DIET), Università di Roma “La Sapienza”, Via

Eudossiana, 18, Roma, 00184, Italy
4International Centre for Theory of Quantum Technologies

(ICTQT), University of Gdansk, Jana Bażyńskiego 1A, Gdańsk,
80-309, Poland

5Department of Computer Science, Middlesex University, The
Burroughs, London, NW4 4BT, United Kingdom

*Correspondence to: massimiliano.incudini@univr.it

Abstract

Quantum neural networks hold significant promise for numerous appli-
cations, particularly as they can be executed on the current generation
of quantum hardware. However, due to limited qubits or hardware noise,
conducting large-scale experiments often requires significant resources.
Moreover, the output of the model is susceptible to corruption by quantum
hardware noise. To address this issue, we propose the use of ensemble
techniques, which involve constructing a single machine learning model
based on multiple instances of quantum neural networks. In particular,
we implement bagging and AdaBoost techniques, with different data load-
ing configurations, and evaluate their performance on both synthetic and
real-world classification and regression tasks. To assess the potential perfor-
mance improvement under different environments, we conduct experiments
on both simulated, noiseless software and IBM superconducting-based
QPUs, suggesting these techniques can mitigate the quantum hardware
noise. Additionally, we quantify the amount of resources saved using these
ensemble techniques. Our findings indicate that these methods enable the

1

ar
X

iv
:2

30
3.

11
28

3v
1

 [
qu

an
t-

ph
]

 2
0

M
ar

 2
02

3

construction of large, powerful models even on relatively small quantum
devices.

1 Introduction

The emerging field of quantum machine learning [1] holds promise for enhancing
the accuracy and speed of machine learning algorithms by utilizing quantum
computing techniques. Although the potential of quantum machine learning is
expected to be advantageous for certain classes of problems in chemistry, physics,
material science, and pharmacology [2], its applicability to more conventional
use cases remains uncertain [3]. Notably, utilizable quantum machine learning
algorithms generally need to be adapted to run on ‘NISQ’ devices [4], that are
current noisy quantum computer, no error corrected and with modest number of
qubits and circuit depth capabilities. In the quantum machine learning scenario,
the quantum counterparts of classical neural networks, quantum neural networks
[5], have emerged as the de facto standard model for solving supervised and
unsupervised learning tasks in the quantum domain.

While quantum neural networks have generated much interest, they presently
have some issues. The first is barren plateau [6] characterised by the exponentially-
fast decay of the loss gradient’s variance with increasing system size. This
problem may be exacerbated by various factors, such as having overly-expressive
quantum circuits [7]. To address this issue, quantum neural networks need to
be carefully designed [8] and to incorporate expressibility control techniques
such as projection [9] and bandwidth control [10]. The second problem, which
is the one addressed in this work, concerns the amount of resources required
to run quantum neural networks (the limited number of total qubits -currently
up to over a hundred- and the low fidelity of operations on current quantum
devices severely restrict the size of the quantum neural network in terms of input
dimension and layers).

In order to address the latter issue, we propose employing of NISQ-appropriate
implementation of ensemble learning [11], a widely used technique in classical
machine learning for tuning the bias and variance of a specific machine learning
mechanism via the construction of a stronger classifier using multiple weak
components, such that the ensemble, as a whole, outperforms the best individual
classifier. The effectiveness of ensemble systems has been extensively demon-
strated empirically and theoretically [12], although there does not currently exist
any overarching theoretical framework capable of e.g. covering the requirements
of ensemble components diversity to guarantee its out-performance. We here seek
to provide and quantify a motivation for employing classical ensemble techniques
in relation to NISQ-bases quantum neural networks, which we address via the
following three arguments.

The first argument concerns the potential for the superior performance of
an ensemble system composed of small quantum neural networks compared to
a single larger quantum neural network. This notion is based on the rationale
that while quantum neural networks are inherently powerful machine learning

2

models, they exhibit intrinsic variance due to the nature of highly non-convex
loss landscape, implying that different predictors will result from randomly-
initialised stochastic gradient descent training, in common with classical neural
networks. (Modern deep learning practice often deliberately overparameterises
the network in order to render the loss more convex [13], with the asymptotic
case of infinitely wide neural networks exhibiting a fully convex loss landscape,
making it effectively a linear model [14]). Although overparameterization in
quantum neural networks has been studied theoretically [15, 16, 17] and has been
shown to be beneficial to generalization performances within certain settings,
the increase in resource requirements makes this approach almost completely
impractical on NISQ devices. In the classical literature, however, it has been
demonstrated that ensemble techniques can perform comparably to the largest
(generally overparameterized) models with significantly fewer resources (especially
in relation to overall model parameterization), c.f. for example [18, Figure 2].

The second argument pertains to the resource savings achievable by ensemble
systems, particularly in terms of the number of qubits, gates, and training samples
required. For example, the boosting ensemble technique involves progressive
dividing of the training dataset into multiple, partially overlapping subsets
on the basis of their respective impact on the performance of the cumulative
ensemble classifier created by summing of the partial weak classifiers trained
on previously-selected data subsets. This enables the ensemble quantum neural
network to be constructed in parallel with individual quantum neural networks
operating on datasets of reduced size. The random subspace technique, by
contrast, trains each base predictor on a random subset of features, but also
provides an advantage in terms of the overall number of qubits and gates required.
Employing the random subspace technique in a quantum machine learning setting
would parallel the various quantum circuit splitting techniques (c.f. for example
[19]), and divide-and-conquer approaches, that have been utilized in the field of
quantum chemistry [20] and quantum optimization [21].

Our third argument, which is specific to quantum computing, examines the
potential of ensembles’ noise-canceling ability. Previous works have demonstrated
that ensembles can enhance the performance of several noisy machine-learning
tasks (see [22]). Our investigation aims to determine whether and to what
extent these techniques can reduce the impact of noise during the execution on
a NISQ device at the applicative level. This approach differs from most current
approaches, which aim to reduce noise at a lower level, as described in [23].

We here examine the impact of ensemble techniques based on bagging (boot-
strap aggregation) and boosting ensembles in a quantum neural network setting
across seven variant data loading schemes. Bagging techniques are selected
for their applicability in high-variance settings, i.e. those exhibiting significant
fluctuations in relation to differ initialisations and differ sample subselections;
contrarily, boosting techniques are effective in relation to high-bias models, i.e.
those which are relatively insensitive to data subsampling.

Our first objective is to quantify the amount of resources (in particular,
the number of qubits, gates, parameters, and training samples) saved by the
respective approaches. Secondly, we evaluate the performance using quantum

3

neural networks as base predictors to solve a number of representative synthetic
and real-world regression and classification tasks. Critically, the accuracy and
loss performance of these approaches are assessed with respect to the number
of layers of the quantum neural networks in a simulated environment. We
thus obtain a layer-wise quantification of performance that addresses one of the
fundamental questions in architecting deep neural systems, namely, how many
layers of abstraction to incorporate? Note that this question is fundamentally
different in a quantum setting compared to classical neural systems; in the latter,
the possibility of multi-level feature learning exists, and thus the potential for
indefinite performance improvement with neural layer depth [17]. This contrast
with the quantum neural networks, in which an increase in the number of layers
affects the expressibility of the ansatz and thus might introduce a barren plateau
[7].

Finally, the noise-canceling capabilities of ensembles will be investigated
by testing a synthetic linear regression task on IBM’s superconductor-based
quantum processing unit (QPU) Lagos.

Contributions Our contributions are the following:

• We evaluate various ensemble schemes that incorporate bagging and boost-
ing techniques into quantum neural networks, and quantify the benefits
in terms of resource savings, including the number of qubits, gates, and
training samples required for these approaches.

• We apply our approach to the IBM Lagos superconductor-based quantum
processing unit to investigate the potential advantages of bagging tech-
niques in mitigating the effects of noise during the execution of quantum
circuits on NISQ devices.

• We conduct a layer-wise analysis of quantum neural network performance
in the ensemble setting with a view to determining the implicit trade-off
between ensemble advantage and layer-wise depth.

2 Related Works

The quest for quantum algorithms able to be executed on noisy small-scale
quantum systems led to the concept of Variational Quantum Circuits (VQCs), i.e.
quantum circuits based on a hybrid quantum-classical optimization framework
[24, 25]. VQCs are currently believed to be promising candidates to harness the
potential of QC and achieve a quantum advantage [26, 27, 28]. VQCs rely on
a hybrid quantum-classical scheme, where a parameterized quantum circuit is
iteratively optimized with the help of a classical co-processor. This way, low-depth
quantum circuits can be efficiently designed and implemented on the available
NISQ devices; the noisy components of the quantum process are mitigated by
the low number of quantum gates present in the VQCs. The basic structure
of a VQC include a data encoding stage, where classical data are embedded

4

into a complex Hilbert space as quantum states, a processing of such quantum
states via an ansatz made of parameterized rotation gates and entangling gates,
and finally a measurement of the circuit to retrieve the expected outcome.
Many different circuit architectures and ansatzes have been proposed for VQCs
[29, 30, 31, 32], depending on the structure of the problem or on the underlying
quantum hardware. VQCs demonstrated remarkable performances and a good
resilience to noise in several optimization tasks and real-world applications. For
example, researchers in [33] introduced a circuit-centric quantum classifier based
on VQC that could effectively be implemented on a near-term quantum device.
It correctly classified quantum encoded data and demonstrated to be robust
against noise. Authors in [25] proposed a VQC that successfully approximated
high-dimensional regression and classification functions with a limited number
of qubits.

VQCs are incredibly well-suited for the realization of quantum neural networks
with a constraint on the number of qubits [34]. A quantum neural network
is usually composed of a layered architecture able to encode input data into
quantum states and perform heavy manipulations in a high-dimensional feature
space. The encoding strategy and the choice of the circuit ansatz are critical
for the achievement of superior performances over classical NNs: more complex
data encoding with hard-to-simulate feature maps could lead to a concrete
quantum advantage [35], but too expressive quantum circuits may exhibit flatter
cost landscapes and result in untrainable models [7]. An example of quantum
neural network was given in [36], where a shallow NN was employed to perform
classification and regression tasks using both simulators and real quantum devices.
In [37], authors proposed a multi-layer Quantum Deep Neural Network (QDNN)
with three variational layers for an image classification task. They managed to
prove that QDNNs have more representation capacity with respect to classical
deep NN. A hybrid Quantum-classical Recurrent Neural Network (QRNN) was
presented in [38] to solve a time series prediction problem. The QRNN, composed
of a quantum layer as well as two classical recurrent layers, demonstrated superior
performances over the classical counterpart in terms of prediction error.

However, quantum neural networks suffer from some non-negligible problems,
which deeply affect their performances and limit their impact in the quantum
ecosystem. Firstly, they are still subject to quantum noise, and it gets worse as
the number of layers (i.e., the depth of the quantum circuit) increases [39, 40].
Secondly, barren plateaus phenomena may occur depending on the ansatz and
the number of qubits chosen, reducing the trainability of such models [7, 41, 6].
Finally, data encoding on NISQ devices continues to represent an obstacle when
the number of features is considerable [34], making them hard to implement and
train [38].

In classical ML, ensemble learning has been investigated for years to improve
generalization and robustness over a single estimator [42, 11]. Ensembling is
based on the so-called “wisdom of the crowd” principle, namely it combines the
predictions of several base estimators with the same learning algorithm to build
a single stronger model. Despite there are many different ensemble methods, the
latter can be easily grouped into two different categories: bagging methods, which

5

build and train several estimators independently and then compute an average of
their predictions [43], and boosting methods, which in turn train the estimators
sequentially so that the each one corrects the predictions of the prior models
and output a weighted average of such predictions [44]. Ensemble methods for
NNs have also been extensively studied, yielding remarkable performances in
both classification and regression tasks [45, 46, 47].

In the quantum setting, the adoption of an ensemble strategy has received
little consideration in the past few years, with very few approaches focusing on
near-term quantum devices and VQC ensembles. In [48, 49], the authors exploit
the superposition principle to obtain an exponentially large ensemble wherein
each instance is weighted according to its accuracy on the training dataset.
However, they make use of a fault-tolerant approach rather than considering
limited quantum resources. A similar approach is explored in [50], where authors
create an ensemble of Quantum Binary Neural Networks (QBNNs) with reduced
computational training cost without taking into consideration the amount of
quantum resources necessary to build the circuit. An efficient strategy for
bagging with quantum circuits is proposed in [51] instead. Very recently, [52]
has proposed a distributed framework for ensemble learning on a variety of
NISQ quantum devices, although it requires many NISQ devices to be actually
implemented. A quantum ECOC multiclass ensemble approach was proposed
in [53]. In [54], the authors investigated the performance enhancement of a
majority-voting-based ensemble system in the quantum regime. Authors in [55]
studied the role of ensemble techniques in the context of quantum reservoir
computing. Finally, an analysis of robustness to hardware error as applied to
quantum reinforcement learning, and presenting compatible results, is given in
[56].

In this paper, we propose a classical ensemble learning approach to the
outputs of several quantum neural networks in order to reduce the quantum
resources for a given quantum model and provide superior performances in terms
of error rate over single quantum neural network instances. To the best of our
knowledge, no one has ever proposed such an ensemble framework for VQCs.
We also compare both bagging and boosting strategy to provide an analysis
on the most appropriate ensemble methods for quantum neural networks in a
noiseless setting. An error analysis with respect to the number of layers of the
quantum neural networks reveals that bagging models greatly outperform the
baseline model with low number of layers, with remarkable performances as the
number of layers increase. Finally, we apply our approach to the IBM Lagos
superconductor-based QPU to investigate the potential advantages of bagging
techniques in mitigating the effects of noise during the execution of quantum
circuits on NISQ devices.

3 Background and Notation

We provide a brief introduction to the notation and concepts used in this work.
The sets X and Y represent the set of features and targets, respectively. Typically,

6

X is equal to Rd, with d equal to the dimensionality in input, whereas Y is equal
to R for regression tasks and Y is equal to {c1, ..., ck} for k-ary classification
tasks. Sequences of elements are indexed in the apex with x(j), where the i-th
component is denoted as xi. The notation ε ∼ N (µ, σ2) indicates that the value
of ε is randomly sampled from a univariate normal distribution with mean µ
and variance σ2. We use the function JP K to denote one when the predicate P
is true and zero otherwise.

3.1 Models in quantum machine learning

We define the state of a quantum system as the density matrix ρ having unitary
trace and belonging to the Hilbert space H ≡ C2n×2n where n is the number
of qubits. The system starts in the state ρ0 = |0〉〈0|. The evolution in a closed
quantum system is described by a unitary transformation U = exp(−itH), t ∈ R,
H Hermitian operator, and acts like ρ 7→ U†ρU . The measurement of the system
in its computational basis {Πi = |i〉〈i|}2n−1i=0 applied to the system in the state ρ
will give outcome i ∈ 0, 1, ..., 2n − 1 with probability Tr[ΠiρΠi] after which the
state collapses to ρ′ = ΠiρΠi/Tr[ΠiρΠi]. A different measurement operation
is given by the expectation value of an observable O =

∑
i λiΠi acting on the

system in state ρ, whose value is 〈O〉 = Tr[ρO].
Quantum computation can be described using a quantum circuit, a sequence

of gates (i.e. elementary operations) acting on one or more qubits of the system
terminating with the measurement operation over some or all of its qubits. The
output of the measurement can be post-processed using a classical function. ”The
set of gates available shall be universal”, i.e. the composition of such elementary
operation allows the expression of any unitary transformation with arbitrary
precision. An exemplar universal gate set is composed of parametric operators

R
(i)
x (θ) = exp(−i θ2σ

(i)
x), R

(i)
y (θ) = exp(−i θ2σ

(i)
y), R

(i)
z (θ) = exp(−i θ2σ

(i)
z), and

the operator CNOT(i,j) = exp(−iπ4 (I−σ(i)
z)(I−σ(j)

x)). The gate I is the identity.
The matrices σx = (0 1

1 0), σy = (0 1
1 0), σz = (0 1

1 0) are the Pauli matrices. The
apex denotes explicitly the qubits in which the transformation acts.

Quantum machine learning forms a broad family of algorithms, some of which
require fault-tolerant quantum computation while others are ready to execute
on current generation ‘NISQ’ (noisy) quantum devices. The family of NISQ-
ready techniques of interest in this document is denoted variational quantum
algorithms [24]. These algorithms are based on the tuning of a cost function C(θ)
dependent on a set of parameters θ ∈ [0, 2π]P and optimized classically (possibly
via gradient descent-based techniques) to obtain the value θ∗ = arg minθ C(θ).
Optimization through gradient-descent thus involves computation of the gradient
of C. This can be done using finite difference methods or else the parameter-shift
rule [57]. The parameter-shift rule is particularly well-suited for NISQ devices
as it can utilise a large step size relative to finite difference methods, making it
less sensitive to noise in calculations.

In general, C(θ) is a function corresponding to a parametric quantum trans-
formation U(θ) of a length polynomial in the number of qubits, the set of input

7

states {ρi}, and the set of observables {Ok}. Specifically, a quantum neural
network is a function in the form

f(x; θ) = Tr[U†(θ)V †(x)ρ0V (x)U(θ)O] (1)

where ρ0 is the initial state of the system, V (x) is a parametric quantum circuit
depending on the input parameters x ∈ X , U(θ) is a parametric quantum circuit
named an ansatz that depends on the trainable parameters θ ∈ [0, 2π)P , and O
is an observable. Given the training dataset {(x(i), y(i))}Mi=1 ∈ (X × Y)M , the
cost function of a quantum neural network, being a supervised learning problem,
is the empirical risk

C(θ) =

M∑
i=1

`(f(x(i); θ), y(i)) (2)

where ` : Y × Y → R is any convex loss function, e.g. the mean square error.
The quantum neural network constitutes a linear model in the Hilbert space

of the quantum system as a consequence of the linearity of quantum dynamics.
It behaves, in particular, as a kernel machine that employs the unitary V (x) as
the feature map ρ 7→ ρx = V (x)ρ, while the variational ansatz ρ 7→ ρθ = U(θ)ρ
adjusts the model weights. Note that although the model is linear in the Hilbert
space of the quantum system, the measurement projection makes it nonlinear in
the parameter space, enabling a set of rich dynamics. quantum neural networks
can have a layer-wise structure, i.e., U(θ) =

∏`
i=1 Ui(θi), which provides it

with further degrees of freedom for optimization (however, due to the lack of
nonlinearity between the layers, the model does not possess the hierarchical
feature learning capabilities of classical neural networks).

The selection of the ansatz is thus a crucial aspect in defining the quantum
neural network, and it is required to adhere to certain classifier-friendly principles.
Expressibility is one such, being the property governing the extent of the search
space that can be explored by the optimization method. Although there are
various ways to formalize expressibility, one of the most widely used definitions
is based on the generation of state ensembles {ρθ = U(θ)ρ0 | θ ∈ Θ} that
are similar to Haar-random (i.e. uniform) distributions of states. Expressible
unitaries are those for which the operator norm of a certain expression involving
the Haar measure and the state ensemble is small. However, expressible circuits
are susceptible to the barren plateau problem, where the variance of the gradient
decreases exponentially with the number of qubits, making parameter training
infeasible. The varieties of ansatz and their expressibilities are presented in [58].
Expressibility is tightly connected to the concept of controllability in quantum
optimal control, and authors in [8] show that the asymptotic limit of the number
of layers `→∞ in the expressible circuits are the controllable ones, i.e. those
whose ansatz is underlied by a Lie algebra matching the space of skew-Hermitian
matrices u(2n).

8

Data selection strategy

Subset of features
No Yes

Subset of No / Random subspace
samples Yes Bootstrapping, pasting Random patch

Composition + training of single model instances

Model instances
Heterogeneous Homogeneous

Type of Sequential / Boosting
processing Parallel Stacking Bagging

Combination rule of the outputs

Discrete Continuous
Majority voting Average

Weighted majority voting Weighted average
Borda counts Min Max

Figure 1: Taxonomy of the three aspects characterizing an ensemble system.

3.2 Ensemble techniques

The purpose of using ensemble systems is to improve the generalization perfor-
mance through reducing the bias or variance of a decision system. Such a result
is obtained by training several models and combining the outcomes according to
a combination rule. A large body of literature on ensemble techniques exists;
the reader is referred to [11] for a general overview.

The idea behind the ensemble system may be motivated by Condorcet’s jury
theorem [12]: a jury of m peers, each having probability p = 1

2 + ε, 0 < ε� 1, of
giving the correct answer, implies that the probability of the verdict given by
majority voting to be correct is

pjury =

m∑
k=dm/2e+1

(
m

k

)
pk(1− p)m−k (3)

and quickly approaches 1 as m→∞. The theorem, broadly interpreted, suggests
that a combination of small, individually ineffective machine learning models
h1, ..., hm (weak learners) can be combined to constitute a more powerful one,
with arbitrarily good performance depending on the nature of data manifold
and the base classifiers hens (strong learner). According to [11], three aspects
characterize an ensemble system: a data selection strategy, the composition plus
training strategies of the single model instances, and the combination rule of its
output. Some of the possible choices are summarized in Figure 1.

The data selection strategy determines how the data should be distributed
to the individual instances. If all instances are trained on the same dataset,
their predictions will be highly correlated, resulting in similar output. The
bootstrapping technique creates smaller, overlapping subsets by sampling with

9

M3

M2

M1

1
N

∑ y

M1 M2 M3

unifo
rm

misclassified
by M1

misclassified
by M1, M2

1
N

∑
y

Figure 2: Comparison between bagging (left) and ‘vanilla’ boosting (right)
techniques. The bagging ensemble trains the models in parallel over a subset
of the dataset drawn uniformly; each prediction is then merged via an average
function. The boosting ensemble trains the models sequentially, the first predictor
draws the samples uniformly, and the subsequent models draw the elements from
a probability distribution biased toward previously misclassified items.

replacement from the dataset, which are then assigned to different instances.
Alternatively, the pasting technique can be used for processing larger datasets
by subsampling without replacement. Another approach is to divide the dataset
by randomly assigning different sets of features with replacement, known as
the random subspace technique (when the bootstrapping and random subspace
techniques are combined, the result is the random patch technique).

There are numerous schemes for combining predictors, with bagging being
the most straightforward and commonly used. Bagging, short for bootstrap
aggregation, involves the creation of multiple homogeneous model instances
trained on bootstrapped datasets. An instance of a bagging scheme is the
random forest, which involves bagging decision trees trained on differing sample
subsets (in some cases, random forests may favor a random patch data selection
strategy over bagging). Another predictor combination scheme is boosting, which
involves training a sequence of predictors via subsampling data according to the
following strategy: an initial predictor is trained on a uniformly drawn subset of
samples, while the i-th instance of the predictor is trained on a subset of elements
that the previous ensemble classifier incorrectly predicted. The ensemble is itself
the convex cumulative sum over predictors. Numerous variations of boosting
exist, one of the most notable being AdaBoost [59]. Contrary to vanilla boosting,
AdaBoost employs an exponential loss such that the ensemble error function
allows for the fact that it is only the sign of outcome that is significant. These
two scheme are illustrated in Figure 2. The other major ensemble scheme is
stacking in which a collection of heterogeneous classifiers trained on the same
dataset are combined via an optimised meta-classifier.

The combination rule merges the output of individual models h1, ..., hm. In
classification tasks i.e. where the label output is discrete y ∈ C = {c1, ..., ck},
the most commonly used rule is majority voting. This is calculated as yens =
arg maxc∈C

∑m
i=1Jhi(x) = cK. Where there exists prior knowledge regarding

the performance of individual predictors, positive weights wi can be assigned,
such that the output is a weighted majority vote. The ensemble prediction
in this case will be yens = arg maxc∈C

∑m
i=1 wiJhi(x) = cK. Alternatively, the

10

borda count method sorts labels in descending order by likelihood, with the
ensemble prediction being the highest ranking sum. Nevertheless, averaging
functions can also be utilised for ensemble classifiers. For regression tasks where
y ∈ R, common combination rules are (possibly weighted) mean, minimum, and
maximum.

4 Discussion

Ensemble techniques, while well-established in the classical realm, have been
largely overlooked in the quantum literature, leaving a number of open questions
in this setting, such as whether bagging techniques, which reduce variance, can
be deployed as effectively as boosting techniques, which reduce bias (both of
which are also data-manifold and base-model dependent). It is also unclear as to
the relative resource saving in terms of circuit size (number of qubits) and depth
(number of gates), and also samples required for training, that can be obtained
by using an ensemble of quantum neural networks instead of a single, large
quantum network. Furthermore, it is not currently well understood the extent
to which an ensemble system can mitigate hardware noise. Our experiments are
designed to explore these questions.

To investigate the first two aspects, we conduct a suite of experiments within
a simulation environment, employing seven distinct ensemble schemes with
varying strategies for data selection, model training and decision combination
applied to four synthetic and real-world datasets, encompassing both regression
and classification tasks. Specifically, we analyze: a synthetic linear regression
dataset, the Concrete Compressive Strength regression dataset, the Diabetes
regression dataset, and the Wine classification dataset, which are widely used
benchmarks for evaluating machine learning models.

Six of the proposed techniques are classified as bagging methods, employing
bootstrapped data to generate the ensemble, while the seventh is a sequential
boosting technique, namely AdaBoost. In particular, we implemented the Ad-
aBoost.R2 version [60] for the regression tasks and the AdaBoost SAMME.R
version [61] for the classification problem. The bagging ensembles are charac-
terized by two parameters: the sample ratio rn ∈ [0, 1], which determines the
percentage of training samples used for each base predictor (with replacement),
and the feature ratio rf ∈ [0, 1], which indicates the percentage of features used
for each predictor (without replacement). We test six bagging schemes by varying
(rn, rf) ∈ {0.2, 1.0} × {0.3, 0.5, 0.8}. For both the classification and regression
tasks, the outputs of the base predictors are combined via averaging. In the case
of the AdaBoost ensemble, the training set for each base predictor has the same
size and dimensionality as the original training set. However, the samples are not
uniformly drawn but are selected and weighted based on the probability of mis-
classification by previous classifiers composing the cumulative ensemble; single
predictors are hence combined using a weighted average. Each ensemble system
comprises 10 base predictors. The characteristics of these ensemble schemes are
summarized in Table 1, where FM identifies the baseline quantum neural network

11

Figure 3: Topology of IBM Lagos quantum processing unit

model, whereas Bag rf rn represents a bagging model with rf percentage of the
features and rn percentage of the samples. Our experiments aim to evaluate the
performance of each of the ensemble frameworks in comparison to the baseline
model, as well as to assess the overall resource saving, including the number of
qubits and overall parametric requirements.

Model
Data Loading

Ensemble #BP Rule
RSBS (rf) BST (rn)

FM - - - - -
Bag 0.3 0.2 0.3 0.2 Bagging 10 Avg
Bag 0.3 1.0 0.3 1.0 Bagging 10 Avg
Bag 0.5 0.2 0.5 0.2 Bagging 10 Avg
Bag 0.5 1.0 0.5 1.0 Bagging 10 Avg
Bag 0.8 0.2 0.8 0.2 Bagging 10 Avg
Bag 0.8 1.0 0.8 1.0 Bagging 10 Avg
AdaBoost 1.0 1.0 AdaBoost 10 W.Avg

Table 1: Characteristics of the baseline benchmark model (0) and ensemble
systems (I to VII). The ensemble system is identified by its broad data loading
method (BST for Boosting and RSBS for Random Subspace), predictor composi-
tion & training type (Ensemble), number of base predictors (#BP), composition
rule (Rule, with Avg representing the average function and W.Avg representing
weighted average).

To investigate the impact of quantum hardware noise, we conduct additional
experiments on the IBM Lagos QPU. Such a device is a 7-qubit superconducting-
based quantum computer. The topology of Lagos is depicted in Figure 3.
Specifically, we compare the performance of the baseline model FM with that of
the Bag 0.8 0.2 configuration on the linear regression dataset. Our goal is to
determine whether ensemble techniques can effectively mitigate quantum noise,
and whether the difference in performance between single predictors and ensemble
systems is more pronounced within a simulated environment in comparison with
real-world execution on quantum hardware.

12

4.1 Experimental setup

This section outlines experimental protocols used to evaluate the performance of
the various ensemble approaches in terms of both the experimental structure
and specific parameters/settings used to configure the algorithm and hardware.

Choice of quantum neural networks We utilize a quantum neural network
of the form f(x; θ) = Tr[U†(θ)V †(x)ρ0V (x)U(θ)O], which operates on n qubits,
with n corresponding to the number of features in the classification/regression
problem. For the feature map, we opted for the simple parametric transformation

V (x) =
⊗n

i=1R
(i)
y (xi). This choice was motivated by the findings in [62],

suggesting that more complex feature maps can lead to unfavorable generalization
properties, incorporation of which may thus unnecessarily bias our findings. (In
[63], various feature maps are compared).

The ansatz is implemented with the parametric transformations structured
layer-wise with, for ` the number of layers, a total of 3`n parameters. It is thus
defined as:

U`(θ) =
∏̀
k=1

[(
n⊗
i=1

R(i)
x (θ3kn+2n+i)

)(
n−1∏
i=1

CX(i,i+1)

)(
n⊗
i=1

R(i)
z (θ3kn+n+i)

)
(
n−1∏
i=1

CX(i,i+1)

)(
n⊗
i=1

R(i)
x (θ3kn+i)

)]
(4)

The role of CNOT gates is the introduction of entanglement in the system, which
would otherwise be efficiently classical simulable. We select as the observable

O = σ
(0)
z , which operates on a single qubit. Local observables like this one are

less susceptible to the barren plateau problem than global ones, for example,

O = ⊗ni=1σ
(i)
z (as noted in [41]). The quantum neural network described in our

investigation is pictured in Figure 4.

Training of the model To train models, we utilize a standard state-of-the-art
gradient descent-based algorithm, ADAM. The Mean Squared Error (MSE) was
selected as the loss function and error metric to evaluate the performances of
the models in the regression tasks, as it is a standard error metric in supervised
learning. MSE was selected as the loss function to train the networks because
it is more sensitive to larger errors. Categorical Cross Entropy (CCE) was
used as the loss function for the classification task instead, while Accuracy
score was employed as error metric to assess the goodness of the classification.
Given the output f of the model, the computation of its gradient ∇f , which
is required to calculate the gradient of the loss function, is accomplished using
the parameter-shift rule [57], since the commonly-used finite difference method
∇f(x; θ) ≈ (f(x; θ)− f(x; θ + ε))/ε is highly susceptible to hardware noise. The
optimization hyper-parameters used are the learning rate, set to 0.1, and the
number of training epochs, which was selected through empirical investigation
(specifically, we carry out 150 training epochs to obtain the simulated results,

13

|0⟩ Ry(x0) Rx(θ0) Rz(θ5) Rx(θ10)

|0⟩ Ry(x1) Rx(θ1) Rz(θ6) Rx(θ11)

|0⟩ Ry(x2) Rx(θ2) Rz(θ7) Rx(θ12)

|0⟩ Ry(x3) Rx(θ3) Rz(θ8) Rx(θ13)

|0⟩ Ry(x4) Rx(θ4) Rz(θ9) Rx(θ14)

Figure 4: Quantum Neural Network used to classify the linear regression dataset,
having 5 qubits and ` = 1 layers. The rotational gates parameterized by the
feature xi form the feature map, while those parameterized via the θs form the
ansatz.

while for QPU-based results, we perform just 10 epochs due to technological
constraints on current hardware).

Datasets We assess the performance of our approach using both synthetic
and real-world datasets, across both regression and classification problems. The
linear regression dataset is artificially generated with parametric control over
the number of samples n, the dimensionality d, and the noise variance σ. It
is procedurally generated by randomly sampling a weight vector w uniformly
over [−1, 1]d such that the training set {(x(i), y(i))}ni=1 is constructed with x(i)

uniformly sampled from [−1, 1]d, y(i) = w · x(i) + ε(i), and ε(i) sampled from a
normal distribution with zero mean and variance σ. In our case we have n = 250
(jointly the training and testing datasets), d = 5 and σ = 0.1. The other datasets
involved in the experiments are the Concrete Compressive Strength dataset, the
Diabetes dataset, and the Wine dataset. The first of these is a multivariate
regression problem calculating the strength of the material based on its age
and ingredients. The second is a multivariate regression problem correlating
the biological and lifestyle characteristic of patients to their insulin levels. The
third one is a multivariate, three-class classification problem investigating the
geographic origin of wine samples from their chemical characteristics. All are
freely available and open source. Table 2 summarizes the characteristics of these
datasets. Every dataset is divided into 80% train samples and 20% test samples.
Moreover, in a data preprocessing phase, raw data were scaled in the range
[−1, 1] to best suit the output of the quantum neural networks; the scaler was
fitted using training data only. No other preprocessing technique, i.e. PCA, has
been applied.

Implementation details Our implementation is written in Python3, and
utilizes Pennylane as a framework to define and simulate quantum circuits, with
the Pennylane-Qiskit plugin used to execute circuits on IBM Quantum devices

14

Dataset Source Nature # Features # Samples Task

Linear - Synthetic 5 250 Regression
Concrete UCI Real-world 8 1030 Regression
Diabetes Scikit-Learn Real-world 10 442 Regression
Wine UCI Real-world 13 178 Classification

Table 2: Characteristics of the datasets analyzed. UCI stands for the open source
UCI Repository. Scikit-Learn is an open-source software library for Python3.
The number of features does not include the target.

via the Qiskit software stack. To improve simulation times, we employed the
JAX linear algebra framework as the simulation backend. By using JAX, the
quantum circuit can be just-in-time compiled to an intermediate representation
called XLA, which can significantly speed up simulation times (by up to a factor
of 10). Our simulations were run on a commercial computer with an AMD
Ryzen 7 5800X (8-core CPU with a frequency of 3.80 GHz) and 64 GB of RAM.
The experiments on the noise canceling properties of ensemble systems were
conducted on the ibm lagos quantum processing unit, which consists of 7 qubits
arranged in the topology {(0, 1); (1, 2); (1, 3); (3, 4); (4, 5); (4, 6)}. The single-gate
fidelity and CNOT fidelity of this QPU did not exceed 2.89e−4 and 8.63e−3,
respectively (according to the latest calibration available).

4.2 Resource efficiency of quantum neural network ensem-
bles

Besides performance, resource efficiency is a key argument for the utilization
of quantum neural network ensembles. Efficiency can be measured by various
metrics: for example, number of qubits, gates, parameters, and training samples
required to achieve comparable performance.

To determine the potential savings in the number of qubits we here deploy
the random subspace technique (also known as attribute bagging or attribute
bootstrap aggregation). Our experiments (cf Figure 5) suggest a potential saving
of 20% to 80% of the total qubit budget via this approach. However, such a
saving is made at the cost of the ensemble was a whole having the potential
for less rich class-discrimination behaviour, dependent on both the sampling
required to achieve full feature coverage and the nature of the underlying data
manifold. A positive consequence of reducing the number of qubits, though, is
that each quantum circuit will have fewer gates and parameters, resulting in
improved noise robustness on real hardware (i.e less decoherence, higher overall
fidelity), as well as faster gradient calculation (individual gradient calculations
require P + 1 quantum circuit evaluations for P parameters). This allows for
a saving of the parameter budget of up to 75% in the indicated experimental
regime, while the saving on gates corresponds proportionately (cf Figure 4).
Savings for each dataset and ensemble technique are as depicted in Figure 5.

15

Figure 5: Number of qubits & parameters employed in individual experiments.

4.3 Simulated Domain Experiments

Initially, we evaluate our method in a simulated environment, one free of noise,
such that the output estimation is infinitely precise. This differs significantly
from execution on a NISQ quantum processing unit, which introduces various
types of hardware error (such as decoherence and infidelity of operations) as
well as sampling error caused via the measurement operation. We examine the
performance of both the baseline models and ensemble systems in a scenario
where the number of layers (i.e. quantum neural network depth) is gradually
increased. To establish robustness to random initialization of parameters (that
is, susceptibility to local minima effects), each simulation is repeated ten times.

4.3.1 Experiment I

The first experiment seeks to perform linear regression on a synthetic noisy 5-
dimensional dataset. The function generating the targets is as follows: y = w·x+ε,
where x ∈ (−1, 1)5 ⊆ R5, w ∈ R5 is randomly generated from a uniform
distribution having as support the range −1 to 1, and ε is a Gaussian noise of
mean zero and standard deviation 0.1. The total number of samples composing
this synthetic dataset is 250. Each experimental data point instantiates a layer
number, a number of bagged features, and a percentage of training data points
available to the ensemble.

The results of the first experiment are indicated in Figure 6. Both FM and
AdaBoost achieve the lowest MSE generalisation error of about 0.021 at 10 layers,
reaching a performance plateau at 5 layers. The bagging models utilising 80% of
the features are able to reach satisfactory results with 10 layers, which are only
0.03 - 0.05 points higher than the error obtained by the best performing models.
In general, it appears that quantum bagging models with a high number of
features are able to generalize well on unseen data in this setting, even with only
20% of the training samples (unsurprisingly, the performance of bagging models
with only 20% of training samples are worse than those of the counterparts using
100% of the training samples). Nevertheless, they still achieve remarkable results
and show impressive generalization capabilities, confirming the effectiveness of

16

bagged quantum models in generalizing well with relatively little training data
[64].

It is also notable that all of the bagging models have a lower MSE general-
isation error as compared to FM and AdaBoost when the number of layers is
low. In particular, with just 1 layer, all of the bagging models outperform FM
and AdaBoost. However, as the number of layers increases, the performances of
bagging models begin to plateau more rapidly than FM and Adaboost which, in
contrast, continue their trend of decreasing error with increasing circuit depth.
This is consistent with the notion that as base classifiers become expressive their
risk of overfitting increases (i.e. they develop an intrinsically low bias). Adaboost,
in particular, is known to be most effective in relation to weak, under-fitting
base classifiers.

Finally, the decreasing error trend seen in the more complex bagging models
as well as the FM and AdaBoost models is not visible in relation bagging with
30% of the features. We conjecture that since this bagging configuration utilises
only 1 qubit, it cannot appropriately model the evolution of the quantum state
with respect to the input. Hence, despite leveraging 10 different submodels of
1 qubit (i.e., one feature) each, the performance of bagging models with 30%
of the features cannot improve as the number of layers increases (adding more
layers in this case translates in performing rotations on the single qubit only,
without the possibility of further CNOTs or other entangling gate operations).
This result hence highlights the importance of entanglement in quantum neural
network models as a means of improving performance.

4.3.2 Experiment II

The second experiment seeks to assess the performance of the respective ensemble
techniques on the Concrete Compressive Strength dataset, which consists in
1030 samples of 8 features. The target value to predict in this regression case
is hence the concrete compressive strength, measured in Megapascal (MPa), a
highly nonlinear function of age and composition of the material.

The results of the regression experiment are in line with the findings of
Experiment I, and are reported in Figure 7. FM, AdaBoost and the two bagging
models applied in relation to 80% of features achieve comparable results at
10 layers, with the Bag. 0.8 1.0 configuration obtaining the lowest MSE error,
followed by Bag. 0.8 0.2, FM and finally by AdaBoost. Also in this case, the
differential between bagging models with 20% of samples and with 100% of
samples is marginal, confirming the effectiveness of bagging quantum models in
relation to reduced training dataset size. In contrast with Experiment I, bagging
models having 30% of available features now have 2 qubits, and therefore
demonstrate a relative improvement in test error when l = 2. However, their
expressive power soon saturates and their error curves plateau.

In general, the generalization capability of bagging models decreases mono-
tonically with the number of layers, in contrast to FM and AdaBoost. In fact,
they exhibit episodes of overfitting when utilising 5 (and up to 7) layers, while
bagging appears to be able to evade this outcome. This is again not surprising,

17

Figure 6: Evolution of MSE error with respect to the number of quantum neural
network layers in Experiment I. Each experimental data point instantiates a
layer number, a number of bagged features and a percentage of training data
points available to the ensemble.

18

since AdaBoost is designed to reduce bias, while bagging ensembles are designed
to reduce variance.

All of the bagging models analyzed still outperform FM and AdaBoost at a low
number of layers, suggesting that they may be the right choice for implementation
on NISQ devices, or else when there is any necessity of implementing low-depth
quantum circuits. As in the first experiment, it is also of interest to note that
all the bagging models with l = 1 here have very similar MSE values, while their
performances vary as the number of layers increases. This may indicate that the
MSE value reached at l = 1 is the optimal for that family of bagging models,
given their expressibility. Moreover, a sharp decrease in MSE beyond the first
layers would appear to be a common pattern, both with respect to the ensembles
and the FM model. For example, at l ≥ 3, the MSE error of FM and AdaBoost
dramatically decrease, while bagging models with 50% of the features exhibit
this trend between l = 1 and l = 2. (A future analysis of this topic might seek
to exploit this characteristic in order to predict a priori how many layers one
would need to attain an error level within a given bound).

Figure 7: Evolution of MSE error with respect to the number of quantum neural
network layers in Experiment II.

4.3.3 Experiment III

The dataset used in Experiment III is the reference Diabetes dataset from Scikit-
learn, consisting of 10 numerical features, including age, sex, body mass index,
blood serum measurements, and also a target variable, a quantitative measure

19

of disease progression one year after baseline. The dataset is composed of 442
instances and is often used for non-trivial regression analysis in ML.

Figure 8 illustrates the results of this experiment. The performance of the
quantum models is notably different from those of the previous two experiments.
It may be seen that the best performing models are the bagging models containing
80% of the features, while FM and AdaBoost achieve satisfactory results up to 6
layers, at which point their MSE begins to increase. At l = 10, every model has
stabilized, however. Bag. 0.8 1.0 and Bag. 0.8 0.2 have an MSE of respectively
8.8% and 6.1% lower than that of FM. AdaBoost has an MSE comparable to
the error of Bag. 0.3 1.0, being only 0.9% higher than FM. Bagging models with
50% of the features have surprisingly good results, better than those of FM and
very close to bagging models with 80% of the features.

As in Experiment I and II, a very sharp MSE reduction between l = 1 and
l = 3 is evident for all of the models. Less complex models like bagging with 30%
and 50% of the features immediately reach a plateau, while the error curves for
bagging with 80% of the features, FM and AdaBoost evolves as the number of
parameters increases. Considering layer numbers between l = 6 and l = 8, it is
clear that FM and AdaBoost overfit as the number of model parameters increases,
and thus they perform poorly on test data. In particular, they overfit to such an
extent that they almost reach the same performance level of the simplest bagging
models with 30% of the features. The latter show no indication of overfitting
however, in common with bagging models having 50% of the features. Bagging
with 80% of the features shows light overfitting when l > 6, but still achieve the
best results from among all of the tested algorithms.

The robustness of bagging models to overfitting with respect to AdaBoost
and FM arises from their ability to reduce variance via averaging of decorrelated
error across the predictions of each submodel. By contrast, when the number
of layers is high, AdaBoost and FM utilise a model that is too complex and
expressive for the underlying task, leading to overfitting. In concordance with
Experiment II, this results suggests that attribute bagging is an effective solution
to overfitting in the NISQ setting in common with that of the classical domain.

In addition, this experiment also highlights more markedly the discrepancy
between the error level of bagging models with the same number of features but
a distinct number of training samples. The difference between the MSE of the
bagging model with 30% and 20% of samples and that with 100% of samples is
now far more apparent, suggesting that when the variance of the dataset is very
high, even bagging models require a sufficient threshold of training samples to
perform well in the NISQ setting.

4.3.4 Experiment IV

For the classification task in Experiment IV, we used the reference UCI Wine
dataset. It is a multi-class classification dataset corresponding to the results of
a chemical analysis of wines grown within a specific region of Italy. It consists of
13 numerical features representing various chemical properties, such as alcohol,
malic acid, and ash content, and a target variable indicating the class of the

20

Figure 8: Evolution of MSE error with respect to the number of quantum neural
network layers in Experiment III.

wine. The dataset has 178 samples and is a common baseline ML benchmark
for low-parametric complexity classifiers.

Results from Experiment IV are reported in Figure 9. Although they cannot
be directly compared to the previous results due to the intrinsically different
nature of the problem, there are few comparative insights that can be gained
from the respective plot of Accuracy curves. First, all the models except bagging
with 30% of the features achieve the same accuracy score of 97.2% using 10 layers.
The performances of Bag. 0.3 0.2 and Bag. 0.3 1.0 are still relatively strong,
however, having an accuracy score of 94.2% and 96.9% respectively. Given the
very low complexity of these two models, this is a striking result.

A further notable aspect of the Accuracy curves is that all ensemble models
converge with far fewer layers than FM. In particular, they require 3 layers in
order to reach a performance plateau on average, after which they saturate and
the accuracy score reaches saturation as well. By contrast, FM struggles to
achieve a comparable accuracy score, only achieving an accuracy greater than
90% when l ≥ 7. This means that the ensemble models are able to learn and
capture the complex relationships between the input features far more efficiently
than FM, which requires a much deeper architecture to attain comparable results.
This observation is particularly relevant when considering the implementation of
these models on NISQ devices, where the number of qubits and the coherence
time are severely limited.

21

Moreover, as expected, bagging models with 100% of the samples obtain a
higher accuracy score than their counterparts with 20% of the features given
the same number of layers. This suggests that using more training samples
can improve the performance of ensemble models provided that the number of
layers is low, as it allows them to better capture the underlying patterns of class
discriminability in the data.

Figure 9: Evolution of Accuracy score with respect to quantum neural network
depth in Experiment IV.

4.4 Experiments executed on superconducting-based QPU

For the real-hardware evaluation, we compare the performance of the baseline
quantum neural network with the Bag 0.8 0.2 ensemble on the same synthetic
linear regression dataset used in Experiment I. We selected the Bag 0.8 0.2
model as representative ensemble technique for its outstanding performance
in the simulated experiments despite the low number of training samples. To
ensure statistical validity, we repeat each experiment 10 times. However, due to
technological constraints on real quantum hardware, we analyze only the linear
dataset with a quantum neural network having a single layer.

Figure 10 presents the real-world experimental findings, which indicate that
the bagging ensemble reduces the expected mean square error by one-third and
the expected variance by half when executed on quantum hardware, compared to
the baseline model. Such results demonstrate that the noise-canceling capabilities

22

(a) (b)

Figure 10: Comparison of average performance of the baseline model and the
Bag 0.8 0.2 ensemble technique on IBM quantum hardware. (10a) shows the
difference in terms of MSE over 10 executions. (10b) shows the performance of
the bagging model with respect to its estimators.

of ensemble technique can be effectively exploited to work on NISQ devices in
realistic settings. Additionally, the performance of the ten bagging models varied
significantly, underlining the need to reinitialise the ensemble multiple times and
validate it against a suitable validation dataset to ensure that the best model is
selected.

5 Conclusion

We propose the use of ensemble techniques for practical implementation of quan-
tum machine learning models on NISQ hardware. In particular, we justify the
application of these techniques based on their capacity for significant reduction
in resource usage, including in respect to the overall qubit, parameter, and gate
budget, which is achieved via the random subspace (attribute bagging) technique.
This resource-saving is especially crucial for noisy hardware, which is typically
limited to a small number of qubits, being vulnerable to decoherence, noise, and
operational errors. Consequently, the contribution of ensemble techniques may
be seen as a form of quantum noise reduction.

To establish this, we evaluated and compared various configurations of bagging
and boosting ensemble techniques on synthetic and real-world datasets, tested
in both a simulated, noise-free environment and a superconducting-based QPU
by IBM, and subtending a range of layer depths.

Our experimental findings showed that bagging ensembles can effectively
train quantum neural network instances using fewer features and qubits, which
leads to ensemble models with superior performance compared to the baseline
model. Reducing the number of features in bagging models of quantum neural
networks directly translates into a reduction in the number of qubits, that is
a desirable characteristics for practical quantum applications. Ensembles of

23

quantum neural network can also help addressing some of the toughest challenges
associated with noise and decoherence in NISQ devices, as well as to mitigate
barren plateau effects. These can be key considerations in the development
of quantum machine learning models, particularly when working with limited
resources on modern quantum systems.

Moreover, bagging models were found to be extremely robust to overfitting,
being able to effectively capture the underlying patterns in the data with high
generalization ability. This makes them better suited for tasks where generaliza-
tion is important, such as in real-world applications. However, it is important
to notice that the effectiveness of bagging quantum models diminishes with
a decrement in the number of features, which suggests that complex bagging
models are still needed to obtain satisfactory results. Using only a subset of
the features can reduce the computational complexity of the model and prevent
overfitting, but it may also result in a loss of information and a decrease in
performance. On the contrary, the number of training samples do not seem to
have a deep impact on bagging quantum models, hence this bagging strategy
may be used when executing quantum neural network instances on real hardware
in order to deal with long waiting queues and job scheduling issues. In this
regard, having a low number of training data leads to faster training procedures
and quantum resource savings. The training of ensembles can also be done in
parallel on multiple QPUs in a distributed learning fashion. Therefore, it is
important to strike a balance between model complexity and performance to
achieve the best possible outcomes.

Additionally, the fact that the bagging models outperform FM and AdaBoost
at low number of layers suggests that the former models are better suited for
low-depth quantum circuits, which have limited capacity and are prone to noise
and errors. For quantum machine learning tasks with NISQ devices, using
bagging models with a low number of layers may be a good strategy to achieve
good generalization performance while minimizing the impact of noise and errors
in the circuit.

Overall, our results suggest that ensembles of quantum neural network
models can be a promising avenue for the development of practical quantum
machine learning applications on NISQ devices, both from a performance and
resource usage perspective. A careful evaluation of the trade-offs between model
complexity, performance, quantum resources available and explainability may
be necessary to make an informed decision.

In a future work, we plan to further investigate the relationship between
ensembles and quantum noise, which is a key consideration when developing
quantum neural network models. Our findings could potentially contribute
to the development of more efficient and accurate quantum machine learning
algorithms, which could have significant implications for real-world applications.

24

Acknowledgements

The contribution of M. Panella in this work was supported by the “NATIONAL
CENTRE FOR HPC, BIG DATA AND QUANTUM COMPUTING” (CN1,
Spoke 10) within the Italian “Piano Nazionale di Ripresa e Resilienza (PNRR)”,
Mission 4 Component 2 Investment 1.4 funded by the European Union - NextGen-
erationEU - CN00000013 - CUP B83C22002940006. MG and SV are supported
by CERN through CERN Quantum Technology Initiative. Access to the IBM
Quantum Services was obtained through the IBM Quantum Hub at CERN. The
views expressed are those of the authors and do not reflect the official policy
or position of IBM and the IBM Q team. MI is part of the Gruppo Nazionale
Calcolo Scientifico of “Istituto Nazionale di Alta Matematica Francesco Severi”.
AM is supported by Foundation for Polish Science (FNP), IRAP project IC-
TQT, contract no. 2018/MAB/5, co-financed by EU Smart Growth Operational
Programme.

Declaration

Authors’ contributions

MI, MG, and AC had the initial idea, implemented the interface for executing
experiments on the IBM QPUs, performed the experiments, and analyzed the
data. MG, SV, DW, AM, and MP supervised the project. All authors contributed
to the manuscript.

Availability of data and materials

The data and source code utilized in our study are freely accessible at https://
github.com/incud/Classical-ensemble-of-Quantum-Neural-Networks. The
procedural generation code for the Linear Regression dataset is also acces-
sible at the same URL. In addition, the UCI Repository provides open ac-
cess to Concrete and Wine datasets, which can be found at https://https:

//archive.ics.uci.edu/ml/index.php. The Diabetes dataset provided by
Scikit-Learn is also freely available and included with the Python3 package.

References

[1] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan
Wiebe, and Seth Lloyd. Quantum machine learning. Nature, 549(7671):195–
202, 2017.

[2] M Cerezo, Guillaume Verdon, Hsin-Yuan Huang, Lukasz Cincio, and
Patrick J Coles. Challenges and opportunities in quantum machine learning.
Nature Computational Science, 2(9):567–576, 2022.

25

https://github.com/incud/Classical-ensemble-of-Quantum-Neural-Networks
https://github.com/incud/Classical-ensemble-of-Quantum-Neural-Networks
https://https://archive.ics.uci.edu/ml/index.php
https://https://archive.ics.uci.edu/ml/index.php

[3] Maria Schuld and Nathan Killoran. Is quantum advantage the right goal
for quantum machine learning? Prx Quantum, 3(3):030101, 2022.

[4] John Preskill. Quantum computing in the nisq era and beyond. Quantum,
2:79, 2018.

[5] Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, Alessio Figalli,
and Stefan Woerner. The power of quantum neural networks. Nature
Computational Science, 1(6):403–409, 2021.

[6] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush,
and Hartmut Neven. Barren plateaus in quantum neural network training
landscapes. Nature communications, 9(1):1–6, 2018.

[7] Zoe Holmes, Kunal Sharma, Marco Cerezo, and Patrick J Coles. Connecting
ansatz expressibility to gradient magnitudes and barren plateaus. PRX
Quantum, 3(1):010313, 2022.

[8] Martin Larocca, Piotr Czarnik, Kunal Sharma, Gopikrishnan Muraleedha-
ran, Patrick J Coles, and M Cerezo. Diagnosing barren plateaus with tools
from quantum optimal control. Quantum, 6:824, 2022.

[9] Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush,
Sergio Boixo, Hartmut Neven, and Jarrod R McClean. Power of data in
quantum machine learning. Nature communications, 12(1):2631, 2021.

[10] Abdulkadir Canatar, Evan Peters, Cengiz Pehlevan, Stefan M Wild, and
Ruslan Shaydulin. Bandwidth enables generalization in quantum kernel
models. arXiv preprint arXiv:2206.06686, 2022.

[11] Cha Zhang and Yunqian Ma. Ensemble machine learning: methods and
applications. Springer US, New York, NY, 2012.

[12] Nicolas De Condorcet. Essai sur l’application de l’analyse à la probabilité
des décisions rendues à la pluralité des voix. Cambridge Library Collection
- Mathematics. Cambridge University Press, Cambridge, 2014.

[13] Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameter-
ization: Global convergence guarantees for training shallow neural networks.
IEEE Journal on Selected Areas in Information Theory, 1(1):84–105, 2020.

[14] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel:
Convergence and generalization in neural networks. Advances in neural
information processing systems, 31, 2018.

[15] Martin Larocca, Nathan Ju, Diego Garćıa-Mart́ın, Patrick J Coles, and
Marco Cerezo. Theory of overparametrization in quantum neural networks.
arXiv preprint arXiv:2109.11676, 2021.

26

http://arxiv.org/abs/2206.06686
http://arxiv.org/abs/2109.11676

[16] Junyu Liu, Francesco Tacchino, Jennifer R Glick, Liang Jiang, and Antonio
Mezzacapo. Representation learning via quantum neural tangent kernels.
PRX Quantum, 3(3):030323, 2022.

[17] Massimiliano Incudini, Michele Grossi, Antonio Mandarino, Sofia Vallecorsa,
Alessandra Di Pierro, and David Windridge. The quantum path kernel:
a generalized quantum neural tangent kernel for deep quantum machine
learning. arXiv preprint arXiv:2212.11826, 2022.

[18] Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sa-
gun, Stéphane d’Ascoli, Giulio Biroli, Clément Hongler, and Matthieu
Wyart. Scaling description of generalization with number of parameters in
deep learning. Journal of Statistical Mechanics: Theory and Experiment,
2020(2):023401, 2020.

[19] Angus Lowe, Matija Medvidović, Anthony Hayes, Lee J O’Riordan,
Thomas R Bromley, Juan Miguel Arrazola, and Nathan Killoran. Fast
quantum circuit cutting with randomized measurements. arXiv preprint
arXiv:2207.14734, 2022.

[20] Takeshi Yoshikawa, Tomoya Takanashi, and Hiromi Nakai. Quantum al-
gorithm of the divide-and-conquer unitary coupled cluster method with a
variational quantum eigensolver. Journal of Chemical Theory and Compu-
tation, 18(9):5360–5373, 2022.

[21] Luca Asproni, Davide Caputo, Blanca Silva, Giovanni Fazzi, and Marco
Magagnini. Accuracy and minor embedding in subqubo decomposition with
fully connected large problems: a case study about the number partitioning
problem. Quantum Machine Intelligence, 2(1):4, 2020.

[22] Peng Zhang, Xingquan Zhu, Yong Shi, Li Guo, and Xindong Wu. Robust
ensemble learning for mining noisy data streams. Decision Support Systems,
50(2):469–479, 2011.

[23] Ryan LaRose, Andrea Mari, Sarah Kaiser, Peter J Karalekas, Andre A
Alves, Piotr Czarnik, Mohamed El Mandouh, Max H Gordon, Yousef Hindy,
Aaron Robertson, et al. Mitiq: A software package for error mitigation on
noisy quantum computers. Quantum, 6:774, 2022.

[24] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin,
Suguru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao
Yuan, Lukasz Cincio, et al. Variational quantum algorithms. Nature
Reviews Physics, 3(9):625–644, 2021.

[25] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quantum circuit learning.
Phys. Rev. A, 98:032309, 09 2018.

[26] Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia,
Ying Li, Edward Grant, Leonard Wossnig, Ivan Rungger, George H Booth,

27

http://arxiv.org/abs/2212.11826
http://arxiv.org/abs/2207.14734

et al. The variational quantum eigensolver: a review of methods and best
practices. Physics Reports, 986:1–128, 2022.

[27] Francesco Di Marcantonio, Massimiliano Incudini, Davide Tezza, and
Michele Grossi. Quask–quantum advantage seeker with kernels. arXiv
preprint arXiv:2206.15284, 2022.

[28] Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. A rigorous and
robust quantum speed-up in supervised machine learning. Nature Physics,
17(9):1013–1017, 2021.

[29] Marcello Benedetti, Mattia Fiorentini, and Michael Lubasch. Hardware-
efficient variational quantum algorithms for time evolution. Physical Review
Research, 3(3):033083, 2021.

[30] Alexandre Choquette, Agustin Di Paolo, Panagiotis Kl Barkoutsos, David
Sénéchal, Ivano Tavernelli, and Alexandre Blais. Quantum-optimal-control-
inspired ansatz for variational quantum algorithms. Physical Review Re-
search, 3(2):023092, 2021.

[31] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approxi-
mate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.

[32] Hrushikesh Patil, Yulun Wang, and Predrag S Krstić. Variational quantum
linear solver with a dynamic ansatz. Physical Review A, 105(1):012423,
2022.

[33] Maria Schuld, Alex Bocharov, Krysta M Svore, and Nathan Wiebe. Circuit-
centric quantum classifiers. Physical Review A, 101(3):032308, 2020.

[34] Fabio Valerio Massoli, Lucia Vadicamo, Giuseppe Amato, and Fabrizio
Falchi. A leap among quantum computing and quantum neural networks:
A survey. ACM Comput. Surv., 55(5), 12 2022.

[35] Vojtech Havlicek, Antonio D Corcoles, Kristan Temme, Aram W Harrow,
Abhinav Kandala, Jerry M Chow, and Jay M Gambetta. Supervised learning
with quantum-enhanced feature spaces. Nature, 567(7747):209–212, 2019.

[36] Antonio Macaluso, Luca Clissa, Stefano Lodi, and Claudio Sartori. A varia-
tional algorithm for quantum neural networks. In International Conference
on Computational Science, pages 591–604. Springer, 2020.

[37] Chen Zhao and Xiao-Shan Gao. Qdnn: deep neural networks with quantum
layers. Quantum Machine Intelligence, 3(1):1–9, 2021.

[38] Andrea Ceschini, Antonello Rosato, and Massimo Panella. Hybrid quantum-
classical recurrent neural networks for time series prediction. In 2022
International Joint Conference on Neural Networks (IJCNN), pages 1–8,
2022.

28

http://arxiv.org/abs/2206.15284
http://arxiv.org/abs/1411.4028

[39] Hanrui Wang, Jiaqi Gu, Yongshan Ding, Zirui Li, Frederic T Chong, David Z
Pan, and Song Han. Quantumnat: quantum noise-aware training with
noise injection, quantization and normalization. In Proceedings of the 59th
ACM/IEEE Design Automation Conference, pages 1–6, 2022.

[40] Zhiding Liang, Zhepeng Wang, Junhuan Yang, Lei Yang, Yiyu Shi, and
Weiwen Jiang. Can noise on qubits be learned in quantum neural network?
a case study on quantumflow. In 2021 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pages 1–7. IEEE, 2021.

[41] Marco Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J
Coles. Cost function dependent barren plateaus in shallow parametrized
quantum circuits. Nature communications, 12(1):1–12, 2021.

[42] Giovanni Seni and John F Elder. Ensemble methods in data mining:
improving accuracy through combining predictions. Synthesis lectures on
data mining and knowledge discovery, 2(1):1–126, 2010.

[43] Naomi Altman and Martin Krzywinski. Ensemble methods: bagging and
random forests. Nature Methods, 14(10):933–935, 2017.

[44] Peter Bühlmann. Bagging, boosting and ensemble methods. In Handbook
of computational statistics, pages 985–1022. Springer, Berlin, DE, 2012.

[45] Ahmed Hamza Osman and Hani Moetque Abdullah Aljahdali. An effective
of ensemble boosting learning method for breast cancer virtual screening
using neural network model. IEEE Access, 8:39165–39174, 2020.

[46] Omer Sagi and Lior Rokach. Ensemble learning: A survey. Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery, 8(4):e1249,
2018.

[47] Simon Berkhahn, Lothar Fuchs, and Insa Neuweiler. An ensemble neural
network model for real-time prediction of urban floods. Journal of hydrology,
575:743–754, 2019.

[48] Maria Schuld and Francesco Petruccione. Quantum ensembles of quantum
classifiers. Scientific reports, 8(1):1–12, 2018.

[49] Amira Abbas, Maria Schuld, and Francesco Petruccione. On quantum
ensembles of quantum classifiers. Quantum Machine Intelligence, 2(1):1–8,
2020.

[50] Daivid Leal, Tiago De Lima, and Adenilton J Da Silva. Training ensembles
of quantum binary neural networks. In 2021 International Joint Conference
on Neural Networks (IJCNN), pages 1–6. IEEE, 2021.

[51] Antonio Macaluso, Luca Clissa, Stefano Lodi, and Claudio Sartori. Quantum
ensemble for classification. arXiv preprint arXiv:2007.01028, 2020.

29

http://arxiv.org/abs/2007.01028

[52] Samuel Stein, Nathan Wiebe, Yufei Ding, Peng Bo, Karol Kowalski, Nathan
Baker, James Ang, and Ang Li. Eqc: ensembled quantum computing
for variational quantum algorithms. In Proceedings of the 49th Annual
International Symposium on Computer Architecture, pages 59–71, 2022.

[53] David Windridge, Riccardo Mengoni, and Rajagopal Nagarajan. Quantum
error-correcting output codes. International Journal of Quantum Informa-
tion, 2018.

[54] Ruiyang Qin, Zhiding Liang, Jinglei Cheng, Peter Kogge, and Yiyu Shi.
Improving quantum classifier performance in nisq computers by voting
strategy from ensemble learning. arXiv preprint arXiv:2210.01656, 2022.

[55] Tanjung Krisnanda, Kevin Dini, Huawen Xu, Wouter Verstraelen, and
Timothy CH Liew. Wisdom of crowds in quantum machine learning. Physical
Review Applied, 19(3):034010, 2023.

[56] Andrea Skolik, Stefano Mangini, Thomas Bäck, Chiara Macchiavello, and
Vedran Dunjko. Robustness of quantum reinforcement learning under
hardware errors. EPJ Quantum Technology, 10(1):1–43, 2023.

[57] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan
Killoran. Evaluating analytic gradients on quantum hardware. Physical
Review A, 99(3):032331, 2019.

[58] Sukin Sim, Peter D Johnson, and Alán Aspuru-Guzik. Expressibility and
entangling capability of parameterized quantum circuits for hybrid quantum-
classical algorithms. Advanced Quantum Technologies, 2(12):1900070, 2019.

[59] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of computer and
system sciences, 55(1):119–139, 1997.

[60] Harris Drucker. Improving regressors using boosting techniques. In Icml,
volume 97, pages 107–115. Citeseer, 1997.

[61] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost.
Statistics and its Interface, 2(3):349–360, 2009.

[62] Jonas Kübler, Simon Buchholz, and Bernhard Schölkopf. The inductive bias
of quantum kernels. Advances in Neural Information Processing Systems,
34:12661–12673, 2021.

[63] Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Kil-
loran. Quantum embeddings for machine learning. arXiv preprint
arXiv:2001.03622, 2020.

[64] Matthias C Caro, Hsin-Yuan Huang, Marco Cerezo, Kunal Sharma, Andrew
Sornborger, Lukasz Cincio, and Patrick J Coles. Generalization in quantum
machine learning from few training data. Nature communications, 13(1):4919,
2022.

30

http://arxiv.org/abs/2210.01656
http://arxiv.org/abs/2001.03622

A Detailed plots

We provide some additional plots of the simulated experiments. In particular,
we compare the different configurations of bagging and boosting techniques and
their variance. Figure 11, 12, 13, 14 shows the results for the Linear, Concrete,
Diabetes, and Wine datasets, respectively.

Figure 11: Comparison of the performance of the baseline model and ensemble
systems on the Linear Regression dataset. It exhibits the MSE and standard
deviation, with a semi-transparent area, of the ensemble schemes in comparison to
the baseline models. The top-left image shows ensembles with Random Subspace
at 30% of the features, top-right shows ensembles with Random Subspace at 50%,
bottom-left displays ensembles with Random Subspace at 80%, and bottom-right
illustrates AdaBoost.

31

Figure 12: Comparison of the performance of the baseline model and ensemble
systems on the Concrete Compressive Strength dataset. It exhibits the MSE
and standard deviation, with a semi-transparent area, of the ensemble schemes
in comparison to the baseline models. The top-left image shows ensembles
with Random Subspace at 30% of the features, top-right shows ensembles with
Random Subspace at 50%, bottom-left displays ensembles with Random Subspace
at 80%, and bottom-right illustrates AdaBoost.

32

Figure 13: Comparison of the performance of the baseline model and ensemble
systems on the Diabetes dataset. It exhibits the MSE and standard deviation,
with a semi-transparent area, of the ensemble schemes in comparison to the
baseline models. The top-left image shows ensembles with Random Subspace at
30% of the features, top-right shows ensembles with Random Subspace at 50%,
bottom-left displays ensembles with Random Subspace at 80%, and bottom-right
illustrates AdaBoost.

33

Figure 14: Comparison of the performance of the baseline model and ensemble
systems on the Wine dataset. It exhibits the average accuracy and standard
deviation, with a semi-transparent area, of the ensemble schemes in comparison to
the baseline models. The top-left image shows ensembles with Random Subspace
at 30% of the features, top-right shows ensembles with Random Subspace at 50%,
bottom-left displays ensembles with Random Subspace at 80%, and bottom-right
illustrates AdaBoost.

34

	1 Introduction
	2 Related Works
	3 Background and Notation
	3.1 Models in quantum machine learning
	3.2 Ensemble techniques

	4 Discussion
	4.1 Experimental setup
	4.2 Resource efficiency of quantum neural network ensembles
	4.3 Simulated Domain Experiments
	4.3.1 Experiment I
	4.3.2 Experiment II
	4.3.3 Experiment III
	4.3.4 Experiment IV

	4.4 Experiments executed on superconducting-based QPU

	5 Conclusion
	A Detailed plots

