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Abstract
Exploiting the properties of quantum information to the benefit of machine learning models is perhaps the most active field of
research in quantum computation. This interest has supported the development of a multitude of software frameworks (e.g.
Qiskit, Pennylane, Braket) to implement, simulate, and execute quantum algorithms. Most of them allow us to define quantum
circuits, run basic quantum algorithms, and access low-level primitives depending on the hardware such software is supposed
to run. For most experiments, these frameworks have to be manually integrated within a larger machine learning software
pipeline. The researcher is in charge of knowing different software packages, integrating them through the development
of long code scripts, analyzing the results, and generating the plots. Long code often leads to erroneous applications, due
to the average number of bugs growing proportional with respect to the program length. Moreover, other researchers will
struggle to understand and reproduce the experiment, due to the need to be familiar with all the different software frameworks
involved in the code script. We propose QuASK, an open-source quantum machine learning framework written in Python
that aids the researcher in performing their experiments, with particular attention to quantum kernel techniques. QuASK
can be used as a command-line tool to download datasets, pre-process them, quantum machine learning routines, analyze
and visualize the results. QuASK implements most state-of-the-art algorithms to analyze the data through quantum kernels,
with the possibility to use projected kernels, (gradient-descent) trainable quantum kernels, and structure-optimized quantum
kernels. Our framework can also be used as a library and integrated into pre-existing software, maximizing code reuse.

Keywords Software for quantum machine learning · Software · Quantum kernels · Quantum machine learning ·
Quantum computing

1 Introduction

Breakthroughs in quantum technologies have allowed the
construction of small-scale prototypes of quantum
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computers (Madsen et al. 2022; Dumitrescu et al. 2022;
Huang et al. 2022), namely NISQ devices (Preskill 2018).
Even though many sources of noise may corrupt the execu-
tion on these devices (Pelofske et al. 2022), we are able to
run a certain class of algorithms (Bharti et al. 2022) which
compromises the strong theoretical speedup of fault-tolerant
quantum algorithms (Montanaro 2016) to achieve shorter,
less noisy computations. A large subset of the NISQ-ready
algorithms is dedicated to the development of machine learn-
ing models.

One of the most interesting technique among them are
the quantum classifiers (Schuld and Killoran 2019; Havlíček
et al. 2019; Mengoni and Di Pierro 2019): the function
f (x) = Tr[ρxρw], where ρx represents the encoding of
a data point x in a quantum state through the feature
map |0〉〈0| �→ U (x)|0〉〈0| = ρx and ρw represents the
weight vector encoded through the mapping |0〉〈0| �→
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W |0〉〈0| = ρw, can be interpreted as a linear1 model
(Schuld and Petruccione 2021). Such a function can be
immediately used to solve supervised learning tasks. By
choosing the weight mapping to be parametric W (θ), we
can train the parameters to minimize some loss function
usinggradient-descent-based techniques: such an approach is
named quantum neural network (Mitarai et al. 2018; Abbas
et al. 2021). However, the training phase of these models
could be affected by barren plateau (McClean et al. 2018;
Holmes et al. 2021), i.e. the flat loss landscape, where the
variance of the gradient vanishing exponentially fast with
respect to the number of qubits. Highly entangled states
(Marrero et al. 2021), noise (Wang et al. 2021), global mea-
surement (Arrasmith et al. 2021), and expressibility of the
feature map (Holmes et al. 2022) have been linked to the
appearance of barren plateau. To avoid such a problem,
Quantum Kernel Estimation (QKE) (Schuld and Killoran
2019; Havlíček et al. 2019; Mengoni and Di Pierro 2019)
algorithm can be used in a hybrid form - we implement a
quantum kernel function κ(x, x′) = Tr[ρxρx′ ], quantifying
the similarity between two encoded data points, with a classi-
cal machine learning algorithm. The training of the model is
classical and is expected to end successfully2 and efficiently
due to the representer theorem (Schölkopf et al. 2001). Clas-
sical kernel methods are a cornerstone of machine learning,
and have been applied to any sort of task including signal
processing (Pérez-Cruz and Bousquet 2004; Rojo-Álvarez
et al. 2018; Camps-Valls 2006), bioinformatics (Camps-Valls
2006; Ben-Hur et al. 2008), and image processing (Wang and
Qi 2014; Yang 2001).

A clear benefit in using quantum kernel estimation to
enhance machine learning applications has still to be found
(Schuld and Killoran 2022). Quantum kernels have been
shown to improve the performances of classical machine
learning algorithms for some problems, such as the predic-
tion of the output of quantum systems (Huang et al. 2021,
2022), and in learning fromdistributions basedon the discrete
logarithm (Liu et al. 2021). They have been applied to sev-
eral real-world, industrial scale problems such as anomaly
detection (Liu and Rebentrost 2018), fraud detection (Di
Pierro and Incudini 2021; Grossi et al. 2022; Kyriienko and
Magnusson 2022), the effectiveness of pharmaceutical treat-
ments (Krunic et al. 2022), and supernova classifications
(Peters et al. 2021). These approaches have been experimen-
tally tested on superconducting (Peters et al. 2021; Wang

1 The linearity of the model means that the model can be expressed as
linear transformation in the Hilbert space of the quantum system (e.g.
matrix multiplication for finite-dimensional Hilbert spaces). However,
the classifier is non-linear with respect to the space in which the original
data lie, for the effect of the feature map.
2 In some cases the quantum kernel values can concentrate around an
average value, requiring a large number of shots to be estimated (Kübler
et al. 2021; Thanasilp et al. 2022).

et al. 2021), optical (Bartkiewicz et al. 2020), and NMR
(Kusumoto et al. 2021) quantum devices, and their effec-
tiveness is usually assessed empirically.

Most of these experiments share, at least partially, a com-
mon structure: dimensionality reduction techniques, used to
limit the number of quantum resources needed for the com-
putation; the scaling of the input; the choice of the quantum
kernel; the evaluation of the quantum kernel. The researcher
is usually in chargeof developing a software prototype,which
requires the knowledge of many different software frame-
works and platforms: the ones dealing with the machine
learning tasks (Paszke et al. 2019;Chollet et al. 2015), and the
one dealing with quantum computing (Bergholm et al. 2018;
Anis et al. 2021; Broughton et al. 2020; Killoran et al. 2019;
Baidu 2020). As the prototype becomes larger, the probabil-
ity of introducing bugs in the code increases (Lipow 1982),
possibly leading to erroneous results (Fidler et al. 2017;
Botvinik-Nezer et al. 2020; Campos and Souto 2021). Well-
organized code has been shown to facilitate code reuse and
reproducibility (Trisovic et al. 2022; Mineault and Nozawa
2021). Minimizing the quantity of code needed to run an
experiment has clear benefit in speeding up the research,
reducing the time spent to learn, and put the software in a
production environment.

We propose QuASK (Quantum Advantage Seeker with
Kernel), a Python3 software framework unifying under a
single interface all the features to run experiment with
quantum kernels. QuASK can be run from the terminal
using a single command line which specifies how to oper-
ate on the given data. Within the same command, the
researcher can specify to analyze the data and subsequently
generate graphics. QuASK can also be used as a library,
to be integrated within an existing pipeline. Finally, the
open-source nature of the framework allows the user to
integrate further capabilities into the software, having them
immediately available through the command line interface.
QuASK is freely available at https://github.com/CERN-IT-
INNOVATION/QuASK and the documentation is available
at https://quask.readthedocs.io/en/latest/index.html.

2 Theoretical aspects of Quantum Kernels

A binary, symmetric function K : X × X → R is a kernel
function if positive definite (pd), i.e.
n∑

i=1

n∑

j=1

ci c j K (xi , x j ) ≥ 0 (1)

for all x1, ..., xn ∈ X given the real3 coefficients c1, ..., cn ∈
R. Supposing k continuous, we can associate a linear Hilbert-

3 The above definition of real-valued kernel is true if we require also
the kernel matrix to be symmetric.
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Schmith integral operator

[Tg](x ′) =
∫

x∈X
K (x ′, x)g(x)dx . (2)

whose eigenfunctions {ei }∞i=1 form an orthonormal basis of
square-integrable functions, and the sequence of correspond-
ing eigenvalues {λi }∞i=1 is non-negative. In such a case,

K (x, x ′) =
∞∑

i=1

λi ei (x)ei (x
′) (3)

For x, x ′ ∈ X ⊆ R
d , some examples of kernels are:

Kl(x, x
′) = x · x ′ Linear (4)

Kp(x, x
′) = (x · x ′ + b)r Polynomial of degree r

(5)

Krbf(x, x
′) = exp(−α‖x−x ′‖) RBF or Gaussian (α>0)

(6)

Keq(x, x
′) = 1 − δx,x ′ Equality kernel (7)

while, for example, |x − x ′| is not a valid kernel due to the
lack of positive definiteness. Important class of kernels are
the translation-invariant kernels K (x, x ′) = �(x−x ′) given
thatX is a vector space (the Gaussian kernel is an instance of
such a family), and the group kernel K (x, x ′) = �(x−1x ′)
given X has a group structure. Kernels can form other ker-
nels: a non-negative linear combination of kernels, a product,
and the limit of a kernel sequence (if exists) are kernels too.
Keq is a valid non-continuous kernel, which can be obtained
as the limit for n → ∞ of exp{−n‖x − x ′‖}. A larger list of
kernels and their compositions can be found in (Rasmussen
and Williams 2005; Duvenaud 2014).

Positive definite kernels can be thought as a general-
ization of the notion of inner product due to the strong
relationship with the concept of Reproducing Kernel Hilbert
Space (RKHS). A space H = { f : X → R} of real-
valued functions over X is a RKHS if any linear functional
Lx : H → R, Lx ( f ) = f (x) is bounded in H (meaning
that if two functions are close in terms of norm, then they are
close also pointwise); or equivalently, for the Riesz represen-
tation theorem, it holds that ∀x ∈ X exists a unique Kx ∈ H
such that f (x) = Lx ( f ) = 〈 f , Kx 〉H, ∀ f ∈ H. For every
RKHSH there is a unique K such that K (x, x ′) = 〈Kx , Kx ′ 〉,
namely K is a reproducing kernel forH, and viceversa given
a K positive definite kernel there is a unique Hilbert space
of functions on X for which K is a reproducing kernel
(Aronszajn 1950). The mapping φ : X → H encoding a
data point within the RKHS is a feature map. Since

K (x, x ′) = 〈Kx , Kx ′ 〉 = 〈φ(x), φ(x ′)〉 (8)

we can interpret the application of K as calculating the inner
product over a different vector space than the original point
space X .

In supervised learning applications is common to use a
feature map φ to encode the data in higher dimensional
(Hilbert) space to find a linear separation of the transformed
data and by using the inverse map φ−1 we can recover a
complex, nonlinear decision boundary in the original space.
Due to the representer theorem, the linear pattern can be
found independently of the dimensionality of H: given the
data points {(x1, y1), ..., (xm, ym)}, the algorithms are fed
with the kernel Gram matrix Ki, j = [K (xi , x j )] of pairwise
kernel similarities and no other information about the data is
necessary for the classifier. Formally, the representer theorem
asserts the linear function

min
f ∈H

L( f ) + λ‖ f ‖ (9)

that minimizes the empirical risk is always in the form:

f (x) =
m∑

i=1

αi K (x, xi ). (10)

The terms L is the loss function, e.g. the mean square error
L( f ) = 1

m

∑m
i=1‖y − y′‖2. The term λ‖ f ‖, λ > 0 has

regularization purposes, i.e. penalizes high norm solutions
thus preferring smooth functions over non-smooth ones. The
determination of the {αi } values is a convex (efficient) opti-
mization problem.

Kernel methods can be applied to supervised learning
tasks using the kernel ridge regression algorithm (Murphy
2012), which is a straightforward generalization of linear
regression, and the support vector machine (SVM) (Cortes
and Vapnik 1995), which finds the linear classifier that maxi-
mizes themargin (i.e. theminimumdistance between the data
points and the boundary, on both sides). The SVM usually
finds a sparse solution, i.e. a classifier whose output depends
only on a few dataset items named support vectors. Kernel
methods can be applied also to unsupervised learning tasks.
Kernel PCA (Schölkopf et al. 1997) is the straightforward
extension of the principal component analysis algorithm.
It finds the components in the higher dimensional Hilbert
space that have larger variance. Kernels can be applied to
clustering techniques too, including the k-means algorithm
(MacQueen 1967).

Kernel function can be parameterized, i.e. depending on
one or more hyper-parameters that can be trained accord-
ing to some loss function or chosen using a grid search.
A different approach is the multiple kernel learning (Bach
et al. 2004), which consists of definingmultiple, fixed kernels
and learning the most effective linear combination of such
kernels.
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2.1 Quantum Kernels implementation

Any parametric quantum circuit implementing the unitary
transformation Uφ(θ) acting on the Hilbert space H of the
n-qubits quantum system can be used to implement a feature
map:

φ : X → H
|0 · · · 0〉 �→ Uφ(x)|0 · · · 0〉 = |φ(x)〉 (11)

Such a feature map allows using the quantum space as an
RKHS. In fact, we can obtain a kernel function sharing the
same structure of Eq.8 by encoding a pair of data points into
quantum states and calculating the inner product between
them:

K (x, x ′) = 〈φ(x)|φ(x ′)〉 (12)
= prob(measurement of the state U †

φ(x ′)Uφ(x)|0 · · · 0〉
using observable σ⊗n

z collapse to eigenstate |0 · · · 0〉).
(13)

Such a kernel can be concretely implemented using the over-
lap test circuit. The circuit structure is shown in Fig. 1a.
We can equivalently use the SWAP test whose circuit struc-
ture is shown in Fig. 1b. Thus, we estimate the value of
the kernel matrix Ki, j by executing, for each pair of data
points, Uφ multiple times (aka shots). This procedure con-
sists in performing multiple measurements which force the
quantum wavefunction to collapse, resulting in the fidelity
measure between the two encoded data points. The kernel
matrix can be finally fed to a kernel machine (e.g. SVM,
Kernel PCA). Moreover, given the parametric quantum cir-
cuit for the feature map Uφ and a second quantum circuit W
implementing the state |w〉 = W |0 · · · 0〉 corresponding to
the linear weights, the function

f (x) = 〈φ(x)|w〉 (14)

is a linear classifier.
Due to the large dimensionality of H, exponentially in

the number of qubits, the computation of the inner prod-
uct may be affected by the curse of dimensionality: any two
pairs of quantum states uniformly sampled in the Hilbert
space have a high probability to be almost orthogonal (Ball
et al. 1997). Each off-diagonal element of the Gram matrix
vanishes with the increasing dimension of H. If we think
to perform the QKE on a current NISQ hardware this small
value Ki j becomes indistinguishable from the inherently per-
vading noisemaking our classifier worthless. Such limitation
requires a number ofmeasurements to estimate a kernel func-
tion value that is polynomially in the dimensions of H, thus
exponentially in n. Therefore, we need to accurately design
our unitary transformation in order to avoid loosing quantum
states within the Hilbert space.

We can design an effective quantum transformation, i.e.
not affected by the curse of dimensionality, using several
techniques.

The first approach is the use of parametric quantum cir-
cuits that we know analytically are restricted to a small
subspace ofH′ ⊂ H, i.e. any parameter assignment x results
in U (x)|0 · · · 0〉 ∈ H′. The second approach is the use of a
bandwidth coefficient (Canatar et al. 2022), i.e. a small scalar
to be applied pointwise to the components of x , diminish-
ing the range of each component. The third approach is to
implement a projected or biased quantumkernel (Huang et al.
2021), which projects the quantum state to an approximate
classical representation through an observable O (the choice
of the observable is an educated guess). The quantum state
lives in a large Hilbert space, but the observable O usually
implies partial traces. The effect of a partial trace (present
in O) over, e.g. the k − th qubit, is to restrict the quantum
space to some smaller representation, thus projecting it to
the k − th qubit subspace. A projected kernel function could
take a gaussian form as follows:

k(x, x ′) = exp(−γ ‖〈0|Uφ(x)OU†
φ(x)|0〉 − 〈0|Uφ(x ′)OU†

φ(x ′)|0〉‖).
(15)

Fig. 1 Fig. 1(a)-(b) Fidelity test and SWAP test for Quantum Kernel Estimation where U is the feature map associated with the quantum kernel.
Figure1(c) Quantum circuit for the feature map associated with the projected kernel, the Hermitian observable H can be arbitrary
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The transformationUφ defining the quantum kernel influ-
ences dramatically the linear decision boundary to be found
in the feature space through classical optimization. In fact,
we can find an optimal4 form in an automatic fashion. The
approach proposed by Glick et al. (2021) suggests the uni-
tary transformation U (x; θ) should depend on both the data
point features x and on some trainable parameters θ . The
trainable parameters are then trained using stochastic gra-
dient descent-based algorithm to minimize a loss function.
Such an approachhas been shown tobe ineffective (Thanasilp
et al. 2022). A different approach to optimize the parametric
quantum circuit, choosing the basis gates at each point of the
circuit as a combinatorial optimization algorithm (possibly a
meta-heuristics) has been proposed by Incudini et al. (2022);
Altares-López et al. (2021).

To evaluate the performance of a quantum kernel, a fam-
ily of metrics has been introduced: geometric difference,
approximate dimension,model complexity, and target-kernel
alignment. The first three metrics constitute the central dis-
cussion of the Huang et al paper Huang et al. (2021). The
last one has several implementations already. The ground-
work can be found in Cristianini et al. (2001).

• The geometric difference compares classical and quan-
tum kernel feature spaces evaluating the separation in
performances of the two kernels. A large g compared
with the

√
N indicates there is a deviation between the

two kernel performances.
• The approximate dimension gives us an effective dimen-

sion of the quantum feature space generated by the
encoding of the training samples. Indeed, this quantity
helps us to understand the expressibility of the quantum
kernels. If the d saturates with N it means the quan-
tum states of the training data points are all orthogonal,
otherwise a small value of d tells us the Hilbert space
has not been fully exploited and the model has limited
expressivity.

• The model complexity represents a final test where we
find the complexity of a kernel including in the com-
putation the labels of data. This metric derives from a
prediction error generalization bound.

• The target-kernel alignment, as the model complexity,
captures the relation present between a kernel and the rel-
ative target function, that is, the labels. The final objective
of a kernel-based method is to approximate the label dis-
tribution with the data distribution in the feature space,
and a margin tries to quantify this relation.

4 A form which guarantees good accuracy and generalization, or that
satisfies some objective function as the metrics we refer to further in
this section.

3 Quantum software frameworks

In recent years, a variety of software and programming
languages have been developed to perform quantum compu-
tation.Most of the frameworks express quantumcomputation
in terms of quantum circuits (Feynman 1985), which is the
standard model de facto. They are usually able to apply a
universal set of basis gates, decompose a unitary matrix to
a quantum circuit, reverse a circuit, perform uncomputation
(e.g. to restore the original value of an auxiliary qubit), and
perform circuit transformation (e.g. replacing part of a circuit
with another one). Such frameworks allow the simulation on
the host computer, while others allow sending the quantum
circuit to some remote quantum hardware to be executed.
Some possible alternatives to the quantum circuit model are
the quantum lambda calculus (Van Tonder 2004), the quan-
tum Turing machine (Deutsch 1985), the adiabatic quantum
model (Farhi et al. 2000), the measurement-based quantum
computation (Raussendorf and Briegel 2001), the topologi-
cal quantum computation (Kitaev 2003), and the ZX calculus
(Coecke and Duncan 2011).

A comparison of frameworks using the quantum circuit
model is shown in Table 1. Most frameworks allow to import
and export of circuits in the OpenQASM format (Cross et al.
2017), an open-source specification for quantum circuits.
This facilitates the porting of quantum software among the
different platforms.

3.1 Quantummachine learning frameworks

PennyLane has been the first framework offering Quantum
Machine Learning capabilities. They include the possibil-
ity to train a parametric quantum circuit, whose gradient
can be calculated using the parameter-shift rule (Wierichs
et al. 2022) or with finite difference method. It allows the
integration of a quantum transformation as a layer in a neu-
ral network object defined in Keras (Chollet et al. 2015)
or PyTorch (Paszke et al. 2019) libraries. PennyLane has
also facilities to define a quantum kernel, whose fidelity cir-
cuit (Fig. 1a) is created automatically given the circuit for
a quantum embedding. Strawberry Field proposes the same
high-level capabilities for Continuous Variables formalism
of quantum computing, like photonic Quantum Computing.

Qiskit Quantum Machine Learning has similar features,
allowing us to embed quantum transformations within
PyTorch networks and calculate kernel matrices. TensorFlow
Quantum (Broughton et al. 2020) allows for rapid proto-
typing of hybrid-classical models due to its straightforward
integration with the Machine Learning library TensorFlow
(Abadi et al. 2015). Paddle Quantum allows for effortless
application of QNNs to define LOCC (Local Operations and
Classical Communication) protocols (Chitambar et al. 2014).
Moreover, it allows the simulation of some quantummachine
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Table 1 Comparison of relevant quantum computing frameworks

Vendor Name Ref Language S E QML

- ProjectQ Steiger et al. (2018) Imperative Yes No No

- QCL Ömer (2005) Imperative Yes No No

- QiBO Efthymiou et al. (2021) Python Yes No No

- Quipper Green et al. (2013) Domain specific (Haskell) Yes No No

- Quirk Gidney (2014) Drag-and-drop Yes No No

- SilQ Bichsel et al. (2020) Imperative Yes No No

Amazon Braket Amazon Web Services (2020) Python Yes Yes No

Baidu Paddle Quantum Baidu (2020) Python Yes No Yes

Google Cirq Cirq Developers (2022) Python Yes Yes No

Google TensorFlow Quantum Broughton et al. (2020) Python Yes Yes Yes

IBM Qiskit Anis et al. (2021) Python Yes Yes Yes

Microsoft Azure Quantum Microsoft (2020) Python, Q# Yes Yes No

Microsoft LIQUi|〉 Wecker and Svore (2014) Domain specific (F#) Yes No No

Quantinuum t|ket〉 Sivarajah et al. (2020) Python Yes Yes No

Rigetti Forest (pyQuil) Rigetti (2019) Python Yes Yes No

Xanadu PennyLane Bergholm et al. (2018) Python Yes Yes Yes

Xanadu Strawberry Field Killoran et al. (2019) Python Yes Yes Yes

Legend: S: Simulation on CPU, E: Execution on quantum devices, QML: has quantum machine learning facilities. Domain-specific languages are
embedded in the language denoted between parenthesis

learning algorithms defined in the measurement-based quan-
tum computation formalism.

4 Proposed approach

As described in Section 3, many different quantum machine
learning software exists, and most of them have few high-
level algorithmic capabilities. However, there are several
issues to address: many experiments require the interac-
tion between different software platforms, e.g. Qiskit with
PyTorch, requiring specific expert knowledge to be used. Fur-
thermore, experiments need to be compared with theoretical
results which are growing in the literature without, usually,
a common implementation baseline.

Therefore, we have designed QuASK, a unifying, easy-
to-use software framework that automates each phase of an
experiment: the selection of the dataset, the preprocessing,
the definition of the kernel, its implementation, and analysis.
QuASK can be used both as a standalone executable through
its command line interface and as a software library. The first
approach performs the experiment without writing a single
line of code. The second approach might be interesting if
the researcher needs to use both existing code routines. After
having accurately processed the data, and implemented them
to compute classical and quantum Gram matrices we have a
modest range of metrics (proposed in QuASK) to evaluate
the obtained kernel methods.

4.1 Running experiments through a command line
interface

We show how to use QuASK to perform an end-to-end
experiment. Once installed, the software is run with quask
< command >5. QuASK performs the sequence of opera-
tions illustrated in Fig. 2.

The experiment should start with the choice of a dataset.
In such a case, QuASK offers several classical datasets both
for regression and classification tasks.Moreover, some quan-
tum datasets are available, i.e. datasets whose features has be
encoded on a quantum system and modified by a unitary
transformation, such as the one used in Huang et al. (2021).
The output of the process is a pair of NumPy binary files
representing the feature data and the corresponding labels.

The dataset, which can be obtained by using the QuASK
command get-command or by using any dataset provided

5 It can be equivalently run with python3.x -m quask <

command > where x is the Python version installed on the researcher’
system.
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Fig. 2 Sequence of operations performed when analyzing a dataset using QuASK

by the user in NumPy format (a feature matrix X.npy, X ∈
R
d×n , and a label vector y.npy, y ∈ R

1×n), can be prepro-
cessed classically before being fed to the quantum machine
learning algorithm. Several preprocessing techniques are
available. Firstly, the researcher can vertically slice the
dataset, keeping only a certain range of labels. Specifically,
the software prompts the researcher to simplify the classifica-
tion task by restricting it to binary classification. However, it
is worth noting that most kernel-based predictors are able to
handle both binary and multi-class classification problems.
Secondly, the user can apply dimensionality reduction tech-
niques. These are important especially in the NISQ setting
due to the lack of resources. The techniques available are
PCA for numerical data and FAMD for mixed numerical and
categorical data.6 These choices aremotivated by the fact that
PCA is a widely used dimensionality reduction technique,
while FAMD is a new method specifically tailored to han-
dle categorical data. The user can extend QuASK to include
further dimensionality reduction techniques. Thirdly, it is
possible to fix the possible imbalanceness of the classes using
randomundersampling or randomoversampling.When load-
ing, the script already shows some statistics about the dataset,
both for classification and regression tasks, which can guide
the user through the preprocessing. The output of the process
is the four files X_train, y_train, X_test, y_test
which can now be fed to some kernel machine.

At this point, the quantum kernel is built on the processed
dataset. There are several available techniques the researcher
can select from. The results of such an evaluation are the

6 FAMD, Factor Analysis for Mixed Data is implemented using Prince
library (available at https://github.com/MaxHalford/prince).

kernel Gram matrices corresponding to the training and test-
ing datasets.

The researcher can use optimized quantum kernels, i.e.
quantum kernels whose circuits have been chosen after
an optimization process. Such a process can be gradient-
descent (ADAM optimizer) or gradient-free (grid search
optimizer) based, in case we are optimizing the angles of the
quantum operations, or combinatorial-optimization based,
in case we are optimizing the generators of the quantum
transformations. Although some quantum machine learning
frameworks, such as PennyLane and Qiskit, already allows
gradient-descent optimization of any circuit (including quan-
tum kernels), no one offers the capabilities to adaptively
choose the generators of the transformation through com-
binatorial optimization.

Finally, the researcher can calculate the accuracy of the
kernel model using the training and testing Gram matrices
given as input. The output is a plot comparing the different
kernels. For each kernel matrix, the user specifies the label
that appears at the x-axis of the plot. If multiple instances are
specified with the same label these are interpreted as i.i.d.
random experiments and will contribute to the error bars.
Multiple metrics are defined.
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Fig. 3 Software stack describing the modularity of QuASK. QuASK
is written on top of PennyLane for defining the quantum circuit soft-
ware and Sci-Kit Learn. These frameworks, written in Python, allow
accessing basic machine-learning routines

4.2 Integrating QuASK in an existing code base

There might be cases in which the command line interface
of QuASK cannot be straightforwardly used for a certain
project. For example, the researcher might be forced to use
a particular preprocessing technique, or analyze the result
accordingly to a custom metric. Such cases can be addressed
by integrating QuASK with the existing code base. In fact,
QuASK provides a library of elements that can be integrated
with other projects. The software is organized into several
modules whose structure is shown in Fig. 3.

4.2.1 Download or generate datasets

Thequask.datasetsmodule facilitates the researcher in
choosing a suitable dataset, providing some of the most pop-
ular datasets from OpenML platform7 and custom datasets
generated also from quantum experiments (the latter allows
us to reproduce results in Huang et al. (2021)).

7 OpenML is an open platform for sharing datasets, available at https://
www.openml.org/

4.2.2 Evaluation metrics

The quality of a quantum kernel can be empirically tested
through the performance of a kernel machine with respect
to a certain dataset, by evaluating some metrics. The module
quask.metrics contains themetrics to compare and eval-
uate the kernels, including the kernel polarity (i.e. Frobenius
inner product between two Grammatrices), the target-kernel
alignment (Cristianini et al. 2001), the training and testing
accuracy of the Support Vector Machine with the precom-
puted kernel, the geometric difference (Huang et al. 2021)
(which can be used to find a potential quantum advantage),
and the model complexity (Huang et al. 2021).

4.2.3 Implement quantum kernels

The quantum kernel requires the definition of a feature map
φ which is implemented using a parameterized unitary trans-
formationUφ(x). TheQuantumKernel Estimation algorithm
(Havlíček et al. 2019) calculating the function k(x, x ′) =
〈φ(x)|φ(x ′)〉 is implemented through either the overlap test
(Fig. 1a) or the C-SWAP test (Fig. 1b). The projected quan-
tum kernel calculates classically the inner product between
two feature vectors φ(x1), φ(x2), each one being the out-
put of the quantum feature map φ(x) = 〈0|U †(x)HU (x)|0〉
(Fig. 1c). The feature map crosses the quantum space first
through U(x) and projects the data back in a classical rep-
resentation when measuring with the Hermitian operator H .
QuASK contains both some notable unitary transformations
U from the literature and the code to use such unitary trans-
formations as a kernel function through one of the three
methods described above. The user can define their own uni-
tary transformation and immediately get the kernel function.
QuASK is agnostic with respect to the software framework
used to define, simulate and execute the quantum circuits: we
have implemented some unitary transformations in Penny-
Lane. This allows also the use of the different functionalities
offered by the different frameworks. For example, noise-
less simulation with PennyLane can be speeded up using
JAX.8 The open-source nature of QuASK allows for easy
integration of other quantum computing frameworks in this
platform.

The module quask.kernels collect all the quan-
tum kernels defined within the platform. Most of the
quantum kernels available are parametric quantum trans-
formations in the form of Eq.12. Such a module can be

8 JAX is a high-performance linear algebra library.
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straightforwardly extended to include user-specified quan-
tum kernels. However, we can also have a more expressive
quantum transformation, parameterized by both the user fea-
tures and some trainable parameters, which can be adjusted
using gradient-descent-based techniques to minimize some
criteria. Such criteria can be one of the functions imple-
mented in the quask.metricsmodule. The user can take
advantage of the efficient optax optimization library.More-
over, we can use Structure Learning techniques (Incudini
et al. 2022) to optimize the generators of the transformation
using a combinatorial-optimization-based technique such as
Simulated Annealing (Kirkpatrick et al. 1983) or Genetic
Algorithms (Forrest 1996).

4.3 Execution on real hardware

As the software is built on top of PennyLane, QuASK offers
the same possibility of execution on real-world hardware. In
particular, with the Qiskit-PennyLane plugin9 it is possible
to run the quantum circuit on the IBM superconductor-based
quantum hardware, and with the Braket-PennyLane plugin10

it is possible to exploit Rigetti, IonQ, and Oxford Quantum
Circuit hardware. The execution on the NISQ hardware is
noisy and the results may largely deviate from the simulated
ones. The authors in Heyraud et al. (2022) have studied the
effect of noise on quantum kernels.

5 Conclusions

We have introduced QuASK, a tool supporting researchers
in creating powerful quantum kernels. The software takes
care of the most time-consuming and error-prone aspects of
the experimentation. It exploits theoretical metrics in QML,
providing users with an environment to easily assess cases
for potential quantum advantage. This package offers the
exciting perspective of testing these metrics on real-world
datasets. The QuASK project will be extended in future ver-
sions with a wider range of datasets and feature maps, both
classical and quantum.
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