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In this work we present a novel strategy
to evaluate multi-variable integrals with
quantum circuits. The procedure first en-
codes the integration variables into a para-
metric circuit. The obtained circuit is
then derived with respect to the integra-
tion variables using the parameter shift
rule technique. The observable represent-
ing the derivative is then used as the pre-
dictor of the target integrand function fol-
lowing a quantum machine learning ap-
proach. The integral is then estimated
using the fundamental theorem of inte-
gral calculus by evaluating the original cir-
cuit. Embedding data according to a reu-
ploading strategy, multi-dimensional vari-
ables can be easily encoded into the cir-
cuit’s gates and then individually taken as
targets while deriving the circuit. These
techniques can be exploited to partially in-
tegrate a function or to quickly compute
parametric integrands within the training
hyperspace.

1 Introduction

Many scientific and engineering problems require
the evaluation of numerical integrals of varying
complexity of the form:

I(α) =
∫ xb

xa

g(α;x) dnx, (1)

where the bold symbols correspond to vectors.

There are many numerical integration methods
which tackle this problem, and the choice usually
depends on the characteristics of the integrand
functions. For instance, low-dimensional well-
behaved integrals can be successfully integrated
with quadrature methods. However, more com-
plicated or higher-dimensional integrands will

lead to a significant increase in computational
costs

In those cases, Monte Carlo (MC) methods
are often favored due to their ability to handle
a wider range of integrand functions without im-
posing stringent requirements and a convergence
rate that does not depend on the dimensionality
of the integrand. An important feature of MC
methods is the possibility of binning partial re-
sults so that differential distributions in any of
the integration variables can be obtained. How-
ever, in exchange for their flexibility, they suffer
from slow convergence and require a large num-
ber of function evaluations. To mitigate these
issues, various techniques have been proposed to
speed up the integration process, reduce the num-
ber of integrand evaluations while producing ac-
curate results [1–5].

In the context of particle physics, these advan-
tages have made the VEGAS [6,7] MC algorithm
into the gold standard for numerical integration.
Over the past decade, there have been numerous
attempts to further improve the algorithm with-
out modifying the underlying strategy. Some ex-
amples are the implementation of the algorithm
in new hardware devices [8, 9], which offer a raw
speed-up over traditional computing; the usage
of multi-channel techniques [10], which exploit
prior knowledge of the behavior of the different
pieces of the integrand; or machine learning tech-
niques to enhance the importance sampling algo-
rithm [11,12].

However, all these methods suffer from the
same drawback: obtaining a result requires the
repeated numerical evaluation of the integrand
in the region of interest. In addition, even if the
integral smoothly depends on parameters which
are not integrated over (α in Eq. (1)), any change
in α requires a complete new run.

In Refs. [13, 14] a new approach has been pro-
posed which can be utilized to circumvent this
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issue. These methods are based on using artifi-
cial Neural Networks (aNN) to build a surrogate
model for the primitive of the integrand. Such a
surrogate can keep the dependence on both the
integration variables and the function parame-
ters. By subsequently training the derivative of
the model to approximate the integrand it is pos-
sible to recover its primitive. While the compu-
tational cost doesn’t disappear (it is translated
to the training of the process), it allows for the
evaluation of the integral (or the marginalization
of the integrand over any of the variables) for any
choice of parameters within the training range at
almost zero additional cost.

In this paper we apply the same strategy in
a quantum machine learning (QML) [15–19] con-
text to estimate the value of integrals of the form
of Eq. (1).
The unique aspects of quantum circuits ren-

ders them an exceptional tool for this methodol-
ogy. In the classical version, we need to train the
derivative of the aNN. By taking the derivative,
the architecture of the network can considerably
change, possibly leading to a costly hyperparam-
eter search in order to find the optimal model.
With a quantum circuit instead, we can exploit
the properties of quantum circuits in order to
obtain the derivative using the Parameter Shift
Rule (PSR) [20–23], therefore using the same ar-
chitecture for the derivative and its primitive.

In doing this, we use Qibo [24–30], a full-stack
and open-source framework for quantum simula-
tion, control and calibration.

The exponential development of quantum tech-
nologies leads us to believe that quantum circuits
and QML tools can be exploited to get faster and
better performance with respect to the classical
algorithms once the limited Near-Intermediate
Scale Quantum [31] (NISQ) era is finally over.
In particular, we note quite some interest on the
field of High Energy Physics where many new al-
gorithms are being developed and tested leading
to a very robust ecosystem of quantum comput-
ing tools focusing on particle physics [32–38]

This paper is structured as follows, we expose
the method in Sec. 2, after a brief introduction to
QML and circuits derivative calculation respec-
tively in Sec 2.1. and Sec. 2.3. In Sec. 3 we apply
the method to two situations, a toy-model repre-
sented by a d-dimensional trigonometric function
and a real-life scenario by calculating the inte-

gral of the u quark Parton Distribution Function
(PDF).

All results can be reproduced using the code
at:

https://github.com/qiboteam/QiNNtegrate.

2 Methodology
In this section we introduce well known concepts
of quantum computation which are useful to bet-
ter understand the methodology. Then, we de-
scribe the integration procedure more in detail.

2.1 Quantum Machine Learning in a nutshell
Classical ML is nowadays widely used to tackle
statistical problems, such as classification, regres-
sion, density estimation, pattern recognition, etc.
The goal of the ML algorithms is to teach a model
to perform some specific task through an itera-
tive optimization process. Let us recall here some
basic ML concepts which equally apply to QML
in order to establish the notation used through
the paper.

We consider two variables: an input vector x
and an output vector y, which is related to x
through some hidden law

y = f(x), (2)

which we aim to estimate. These vectors can be
composed of any number of variables and the di-
mensionality of the input and output data can in
general be different. A parametric model M(θ)
is then chosen to make predictions yest(x|θ) =
M(θ)x of the output variables. Once a model is
selected, a loss function J is typically used to ver-
ify the predictive goodness of the model M. Fi-
nally, an optimizer is selected, which is in charge
of computing:

θbest = argminθ
{
J [yest(x|θ),ymeas]

}
. (3)

where ymeas is a measured realization of y.
In Quantum Computation (QC) we use two-

level quantum systems called qubits to store in-
formation, and we act on their states with uni-
tary operators we call gates, defining a totally
reversible computation. These unitaries can be
combined to build up more-than-one qubit gates,
acting like quantum counterparts of the classi-
cal control gates. This paradigm enriches the
computational possibilities of QC with new tools
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such as superposition and entanglement, which
can be used to define new computational mod-
els. In QML, Variational Quantum Circuits
(VQC) [18, 39, 40] substitute the classical model
M(θ) by a parametric circuit C(θ). A VQC is a
collection of gates which depend on a set of pa-
rameters θ. A circuit can be applied to an initial
quantum state |ψi⟩ and, after the execution, a
measurement can be performed on the final state
|ψf ⟩, analogously to Eq. (2). We can collect in-
formation by executing the circuit Nnshots times,
and then calculating expected values of arbitrary
chosen observables, such as:

GÔ(θ) = ⟨ψi|C†(θ)Ô C(θ)|ψi⟩ , (4)

where Ô is a target observable. Through this
work Ô = Ẑ with Ẑ a non-interacting σZ . In the
following, for simplicity, we omit the reference to
the observable.

We can use the QC tools as interpreters of the
typical ML components to define a QML strat-
egy. Several methods are known to embed input
data x into a quantum system [41–43]. In this
work we follow the procedure presented in [42],
which allows us to encode multi-dimensional vari-
ables into derivable gates of a circuit. Then, the
model to be optimized will be interpreted by a
parametric VQC. Depending on the presence or
absence of a classical part in the model (e.g. a
Neural Network), we can make distinction be-
tween hybrid classical-quantum or pure quantum
QML architectures. Finally, the expected value
of Eq. (4) can be identified with the predictions
yest,

yest = G(x|θ) = ⟨ψi|C†(x|θ)Ẑ C(x|θ)|ψi⟩ . (5)

There are numerous possible choices for the
loss function and the optimizer, depending on
the type of model chosen and whether one is
doing simulation or executing on a real quan-
tum hardware. For example, by doing quantum
simulation of a quantum neural network, a nat-
ural choice is to select a well known gradient-
based optimizer [44–49] or some meta-heuristic
algorithm like evolutionary strategies [50], simu-
lated annealing [51], etc. Instead, when deploy-
ing the algorithm in actual quantum hardware it
can be more effective to use shot-frugal optimiz-
ers [52–54] or to calculate gradients using metrics
better suited to the QC context [55].

2.2 Circuit’s ansatz

Building up our QML models, we encode the in-
put data into the parametric gates of the circuit
following the strategy suggested in [42], accord-
ing to which an external variable can be uploaded
into the angle ϕ of rotational gates of the form:

Rk(ϕ) = exp{−iϕσ̂k}, (6)

where the hermitian generator of the rotation σ̂k

is one of the Pauli’s matrices.

In particular, we implement an architecture in-
spired by the uploading layer described in [42]
called fundamental Fourier Gate, U , which is
composed of five sequential rotations around the
z and the y axis. Our U implementation is as
follows:

U(x|θ) = Rz(θ1)Ry(θ2)Rz(θ3)Rz(θ4 x)Ry(θ5),
(7)

where the data x is uploaded into the second gate
in order of application on the initial state. The
power of this approach lies in the fact that by re-
uploading the data x into N consecutive channels
in the form of Eq. (7), we approximate a target
function as would an N -term Fourier series. This
kind of strategy is introduced for a single qubit
system on which a single variable is re-uploaded,
but is easily extendible to a more-than-one qubit
case. Moreover, increasing the number of qubits
also increases the flexibility of the model, allow-
ing us to upload different variables into different
wires of the circuit. Several choices of architec-
ture can be done, and we present here two of the
various models implemented within the code ac-
companying this work.

The first one is shown in Fig. (1), we encode
two dimensions in every qubit, such that the com-
plexity of the circuit is equal toNdim/2. Each up-
loading of the couple of variables (xj , xj+1) into
the associated qubit is in the form presented in
Eq. (7).
Each family of gates {Uj ,Uj+1} is then followed

by an entangling channel Went, which distributes
the information accumulated by each qubit to the
entire system. After the last layer, a final rota-
tion Ry is added to each wire of the circuit before
performing the measurements.

The second model implemented that we de-
scribe here aims to tackle the problem of fitting
and integrating a Parton Distribution Function
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Figure 1: Diagram representation drawn with [56] of the
reuploading ansatz used to fit a 4-dim function. The
U(xi) quantum channel corresponds to the fundamen-
tal Fourier Gate presented in [42], while the entangling
channel Went is built with a combination of CZ gates.

Figure 2: Schematic representation drawn with [56] of
the qPDF ansatz used to fit the u quark parton density
function.

(PDF) over x for any value of Q. More specifi-
cally, we define a model inspired by the one pre-
sented in [57] to fit the u quark PDF. We extend
this model to fit the two dimensions x and q of
the PDF. This second ansatz is shown in Fig. (2),
where we define the following channels:

G(q) = Ry(α1 q + β1),
G(log x) = Rz(α2 log x+ β2),
G(x) = Ry(α3 x+ β3),

(8)

with αi and βi variational parameters. The im-
balance of 2 : 1 in uploading x and q variables
into the model is a choice motivated by the com-
plexity of the PDF as the two target variables
vary. In case of q, one upload gate is enough to
tackle the problem. While the different behav-
iors of the PDF for small and large x requires
uploading the variable twice (with the addition
of a logarithmic activation function). This is one
example of how a circuit designed to approximate
a family of problems (in this case PDFs) can also
be satisfactory exploited to integrate said family
of functions thanks to the parameter shift rule,
which is briefly described in the following section.

2.3 Derivative of a quantum circuit
Our aim is then to use the derivative of G de-
fined in Eq. (4) with respect to x as predictor of

the integrand function presented in Eq. (1). For
this we use the Parameter Shift Rule (PSR) as
the method for calculating the derivatives of G
with respect to x. The first example of PSR was
presented in [17] and introduced a method for cal-
culating the derivative of an expectation value in
the form of Eq. (4) with respect to one of the rota-
tion angles affecting the quantum circuit C. We
refer to a more general PSR formula presented
in [20] and further developed later [21–23,58].
According to [20], if a circuit depends on a pa-

rameter µ ∈ θ through a single gate U whose
hermitian generator has at most two eigenvalues,
the derivative of G with respect to µ can be ex-
actly calculated as follows:

g(µ) ≡ ∂µG(θ) = r
(
G(µ+) −G(µ−)

)
, (9)

where ±r are the eigenvalues of the generator of
U , µ± = µ ± s and s = π/4r. In this work we
limit ourselves to rotational gates such as Eq. (6)
for which r = 1

2 and s = π
2 . The derivative of the

circuit corresponds then to the execution of the
same circuit twice per gate to which the input
parameter has been uploaded to.

Since we never upload two input parameters
to the same gate, the multidimensional extension
is a trivial sequential application of the PSR per
dimension and gate. If every dimension (d) is up-
loaded once to every layer (l), the total number of
expectation values necessary is (2l)d. Note that
the number of input parameters does not need
to coincide with the dimensionality of the inte-
gral, making this method particularly useful for
parametric integrals which are less prone to the
so-called curse of dimensionality.

2.4 Solving integrals with quantum circuits
In the following section we describe the QML
training procedure and, once the optimization is
done, how the final model can be used to calcu-
late the integral of the target function.

Calculating the derivative of the circuit with
the PSR, we are able to use the same architec-
ture to evaluate the primitive of a function G and
any of its derivatives g. To be more explicit, if
we recall the formula with which we started the
paper:

I(α) =
∫ xb

xa

g(α;x) dnx, (10)

the finite integral I(α) can also be calculated
through the fundamental theorem of the integral
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calculus which for a 1-dimensional integral reads:

I(α) = G(xb;α) −G(xa;α), (11)

with

G(x;α) =
∫
g(α;x)dx. (12)

Our goal will be training the derivative of a
VQC such that it approximates the function g
at any point xj within the integration limits
(xa,xb).

gj,est(α;xj |θ) = ∂G(α, x1, ..., xn|θ)
∂x1 ... ∂xn

∣∣∣∣
xj

. (13)

If we have a way of evaluating g(α;x) or have
access to measurements of its value we can gener-
ate a set of Ntrain training data. Once the predic-
tions {gj,est}Ntrain

j=1 are calculated for all the train-
ing data, we quantify the goodness of our model
by evaluating a Mean-Squared Error loss func-
tion:

Jmse = 1
Ntrain

Ntrain∑
j=1

[
gj,meas − gj,est(α;xj |θ)

]2
,

(14)
where we indicate with the index (j) the j-th el-
ement in the training dataset and its associated
integrand value. The training is thus performed
by iteratively updating the parameters θ in order
to minimize Eq. (14). Various optimizers have
been tested, including Powell method [59], L-
BFGS [60], a Covariance Matrix Adaptation Evo-
lutionary Strategy [50] (CMA-ES) and a Basin-
Hopping algorithm [61]. The best results are ob-
tained using L-BFGS and the Basin-Hopping op-
timizers when exact simulation is performed. On
the contrary, we noticed that when shot-noise
simulation is executed, the meta-heuristic algo-
rithms (CMA-ES, Basin-Hopping) obtain better
results.

Once the circuit’s parameters are optimized,
we have a fixed architecture which can be used
to evaluate integrals with respect to any combi-
nation of the target variables. This aspect makes
the strategy particularly interesting when dealing
with high-dimensional functions. As an example,
we can marginalize the integrand previously de-
fined over the variable xk

Iab(. . . , xk−1, xk+1, . . . ) =
∫ xk,b

xk,a

g(x)dxk, (15)

by uploading the integration limits, xk,a and xk,b

and removing only that derivative from Eq. (13):

Iab(. . ., xk−1, xk+1, . . . ) ≃
gest(xk,b|θbest) − gest(xk,a|θbest),

(16)

where we write gest explicitly depending only on
xk for simplicity. This can easily be extended for
the partial integration of any of the variables of
which I depends on.

3 Results
In order to showcase the possibilities of the
methodology presented in this paper we are going
to use a VQC for two different target functions.
We will first show the flexibility of the method
to obtain total or partial integrals and differen-
tial distributions, and then we will apply to a
practical case in which the approach can intro-
duce a net-gain. Both examples are implemented
in the public code which accompanies this paper
(among other examples).

3.1 Toy Model
Our first example integrand is a d-dimensional
trigonometric function:

g(x) = cos(α · x + α0), (17)

with x and α n-dim vectors. The integral of
Eq. (17), while trivial to perform analytically,
will serve to demonstrate how training one single
circuit to obtain the primitive,

I(α;x) =
∫
g(α;x)dx, (18)

can provide us the flexibility to obtain other de-
rived quantities.
For instance, we might be interested on the

differential distributions dI(α;x)
dxi

for a given i and
for different values of one of the parameters α.
In general, this would require to perform the nu-
merical integration once per choice of i, per bin
in the distribution and choice of α. By having a
surrogate for I(α;x) we can analytically obtain
each distribution as seen in Fig. 3, were we collect
results obtained by training the model with exact
state vector simulation of the quantum circuits.

In Fig. 3 we have plotted the differential dis-
tribution

dI(α;x1)
dx1

, (19)
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Figure 3: Differential distribution of the integral of Eq. (17) on x1 for different values of α0 with α = {1, 2, 1
2 }. The

ranges chosen for x1 are also the ranges used for the integration of all other variables. These results are obtained
through exact state vector simulation. The training was performed with 100 points in x and 10 different values of
α0 ∈ (0, 5), using the L-BFGS optimizer for 200-300 iterations. The error bands are computed retraining the circuit
for different seeds.

for two different values of α0 within the training
range (0, 5). All other parameters have remain
fixed in order to minimize the computing cost
in this toy-model example. The training range
for the integrated variables (x1, x2, x3) has been
(0, 3.5). In the plots we choose to integrate x2
and x3 from 0 to 3 for every value fo x1, but any
choice of integration limits within the integration
range would be possible.
A shortcoming of this approach is the lack of

an uncertainty associated to the numerical inte-
gration. In Ref. [14] the suggestion is to use an
ensemble of replicas of the network trained to the
same data in order to use the variance as an er-
ror. We have followed the same strategy here by
training an ensemble of circuits randomizing the
choice of training points which leads to a spread
of the results.
Other numerical methods provide some short-

cuts to obtain similar results. For instance MC
integration methods would allow us to bin quan-
tities which depend on the integration variables
(provided that we know beforehand the distribu-
tions that we want to obtain). However, a change
in the parameter α0 will always lead to a new in-
tegration. Instead, once we have a circuit that
approximates Eq. (18), any derived quantity in
the training range is accessible without any new
runs.

It is important to remark that there is no free
lunch, we are paying the penalty in terms of eval-

uations of the integrand (and the surrogate) dur-
ing the training, but the outcome is a flexible rep-
resentation of the final quantity which can then
be reutilized. In a similar manner to Monte Carlo
methods, the accuracy of the calculation can be
improved by increasing computational cost with
either a larger number of samples or longer train-
ing lengths. Note that, unlike other machine
learning problems, in this case we have a function
that enables us to generate an unlimited amount
of data for arbitrary inputs.

3.2 The u-quark PDF

In the previous section we have chosen an ideal
scenario with a function for which we know the
primitive and against which we can exactly test.
In what follows we consider an actual use-case for
the approach that we propose in this paper: the
integration of a function which is only known nu-
merically and for which we have a representation
in the form of a VQC.

In Ref. [57] a VQC was used to perform a PDF
fit. This corresponds to a function f(x,Q) for Q
fixed (called fitting scale). Obtaining the inte-
gral over x of the PDF is a necessary step of any
proper determination in order to obtain normal-
ized results and, due to the empirical nature of
the function, can only be done numerically.

We use the ansatz described in Sec. 2.2 to ob-
tain a model by which we can produce both the
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Figure 4: Comparison between the interpolation grid for
the u-quark of the central replica of NNPDF4.0 and our
fit, for a fixed value of Q = 1.67. While the ansatz in
Sec. 2.2 gives us a model for the integral, the results
training is performed onto the derivative. The training
set uses O(100) points for each fixed value of Q. These
results are obtained through exact state vector simula-
tion.

u-quark PDF and its own integral, hence allowing
for a prediction normalized by construction.
We train the model with the L-BFGS optimizer

and performing exact simulation using Qibo. As
the training data we utilize directly the u-quark
from the NNPDF4.0 [62] PDF grids. We train in
both x (the variable we need to integrate over)
and Q to demonstrate the technique would work
independently of the fitting scale.
We limit the training to (1e-4, 0.7) which is

comparable with the ranges of data available in
PDF determinations. In Fig. 4 we show the re-
sult of fitting the derivative of the ansatz to the
training data, obtaining a very good description
across the entire range.
Since the derivative of the ansatz is able to

approximate the circuit, the associated integral,

Iu(Q2) =
∫ 0.7

10−4
xu(x,Q) dx, (20)

corresponds to the normalization for the u-quark.
In order to show the generalizability of the
method we have also trained the circuit for vary-
ing values of Q. The range of Q has been cho-
sen to avoid crossing quark thresholds for which
the matching between different nf regions in
NNPDF4.0 introduces numerical instabilities.
In QML, in real-life scenarios, one needs to ac-

count for the probabilistic shot-noise associated

0.210

0.220

0.230

I u
(Q

2 )

Estimates of Iu(Q2)

0 2500 5000 7500 10000 12500 15000
Q2 (GeV2)

0.990
1.000
1.010

Ra
tio
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Target result

Figure 5: Above, integral of xu(x, q) calculated for
Nq = 20 values of q. These results are obtained by sim-
ulating circuits with shot-noise. In particular, for each q
we perform Nruns = 100 predictions and each prediction
is obtained by executing the circuit Nshots = 106 times.
The orange line and its confidence belt are calculated
using mean and one standard deviation over the Nruns
prediction sets. Below, average relative percentage error
calculated using the Nruns predictions. The training has
been performed on O(100) different values of Q evenly
spaced on Q2 and took O(20h) in a 32-cores machine.

with the measurement of the quantum states and
the noise associated to the hardware. While the
uncertainty associated to the training shown in
Fig. 3 can in principle be reduced by increasing
the training length, these uncertanties are intrin-
sic to the methodology.

In Fig. 5 we show the calculation of the inte-
gral of Eq. (20) for different values of Q within
the training range. The circuits are simulated
with shot-noise since we perform Nshots = 106

to compute each expected value (circuit is called
Nshots times for each estimation of the primitive
G). We then repeat every measurement of the
integration Nruns = 100 times. The error is com-
puted by taking the variance of the measurement.
The shaded band in Fig. 5 correspond to the 1σ
band.

This corresponds to an ideal real-life scenario
since we are not considering hardware noise. The
shot-noise scales as 1√

Nruns
and leads in this case

to an uncertainty of about 1%. Due to the com-
putational cost we don’t include in this case the
training uncertainty.
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3.3 Normalized by construction
A possible application of our method to an actual
physics problem is the determination of PDFs us-
ing quantum computers [57]. We leave the actual
implementation to future work, but we outline
here the methodology and expected gains.

In Refs. [62, 63] the normalized valence PDFs
are implemented as:

V (x) = 3V̂ (x)∫ xb

xa

dxV̂ (x)
, (21)

where the integral in the denominator is com-
puted numerically between the extremes xa and
xb and the unnormalized distribution V̂ is ap-
proximated by an aNN. Consequently, obtaining
one single value for V (x) requires a costly numer-
ical integral (O(103) function calls).

With the QiNNtegrate approach we can in-
stead construct a PDF which is already normal-
ized:

V (x) = V̂

IV̂

=
3
shifts∑

s

G(xs)

G(xb) −G(xa) , (22)

where we have exchanged the computational bur-
den of computing the numerical integrand by a
costlier evaluation of the unnormalized distribu-
tion. The shifts in the sum corresponds to all
pairs of (x+, x−) needed to compute the deriva-
tive as per Eq. (9).
For the ansatz used in this work we would need

O(10) circuit executions to estimate the deriva-
tive but have removed O(103) executions from
the training process. Furthermore, the fit would
in this case benefit from a simpler functional
form.
In addition, while in our naive approach each

appearance of the VQC (G) corresponds to a
separate evaluation, novel proposals for non-
demolition measurements involving gradients [64]
could further enhance the methodology.

3.4 Integrating on a real qubit
In this section we present some results obtained
executing this algorithm on a real quantum hard-
ware. In particular, we use a superconducting
device composed of a single qubit hosted at the
Quantum Research Center (QRC) of the Tech-
nology Innovation Institute (TII). The entire pro-
cess is realized using the Qibo [24–30] ecosystem;

0.0 0.2 0.4 0.6 0.8 1.0
x

0.1

0.0

0.1

0.2

0.3

0.4

0.5

1 2s
in

(2
x)

Fit of 12sin(2x) with PSR on hardware

Approximation
Target function

Figure 6: Estimates of the integrand g(x) = 1
2 sin(2x)

between x = 0 and x = 1 obtained by executing the pre-
sented algorithm on a real superconducting qubit. The
target Ndata = 20 function values (black dashed line)
are compared with the estimates (orange line), obtained
as the average of Nruns = 5 sets of predictions. The
confidence interval is drawn using 2σ error over the ex-
periments. The results are computed without any kind
of error mitigation technique.

the high level code is written with Qibo and then
executed on the qubit by Qibolab [29]. In case
we make use of Qibosoq [65], which is the server
that integrates Qick [66] in the Qibolab ecosys-
tem for executing arbitrary circuits and pulse se-
quences through RFsoC FPGA boards. All the
single qubit carachterization and calibration rou-
tines are performed using Qibocal [27, 30].

We tackle a simple example to reduce the num-
ber of expected values of the form of Eq. (4)
to be evaluated. In fact, since the derivative
of a circuit is used as predictor in our model,
O(2 ∗ Nx) expected values are needed to com-
pute each estimation, where Nx is the number
of times x is uploaded into the model. For ex-
ample, in case of the one dimensional u quark
PDF presented in Sec. 3.2 Nx = 2Nlayers. We
present in Fig. 6 predictions of Ndata = 20 val-
ues of the integrand g(x) = 1

2 sin(2x), considering
Ndata values of x uniformly distributed in [0, 1].
We calculate Nruns = 5 times the prediction for
each x and use the mean and 2σ to define the
confidence intervals around the estimates which
are shown in Fig. 6. During the process, each
expectation value is obtained executing the cir-
cuit Nshots = 5000 times. This simple example
prooves a simple integrand function can be fitted
on a NISQ device.
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As second test, we calculate the integral value
of the target function:

Itarget =
∫ 1

0

1
2 sin (2x)dx (23)

Nint = 10 times obtaining as estimate: Îtarget =
0.326 ± 0.011, to be compared with the exact
value Itarget = 0.354. The error on the estimate is
the standard deviation over the Nint results. We
believe having such a satisfatory result even with
noisy hardware can be motivated by the nature
of the problem we are tackling. In fact, the target
integral is here calculated following Eq. (11), and
the difference between estimations can help in re-
moving systematic errors that may occur when
dealing with NISQ devices.

4 Conclusion
In this paper we have extended the methods pro-
posed in Refs. [13, 14]. to quantum computers
and shown how the properties of these new type
of devices can introduce a practical advantage
compared to classical alternatives by exploiting
the properties of the PSR.
Furthermore, we have demonstrated a

practical-case in which one can obtain a net
advantage by utilizing this approach. A natural
extension of this work is an enhancement of the
methodology proposed in Ref. [57] in which the
PDF fit could not be normalized due to technical
constraints.
We then reported interesting results obtained

on a real superconducting qubit, showing how a
NISQ device can already be used to fit integrand
functions following our algorithm. We have also
made all code available in a public python frame-
work QiNNtegrate1 which can be used to repro-
duce the results of this work and which can be ex-
tended to other custom functions. QiNNtegrate
is based on Qibo and thus the generated circuits
can be either simulated in a classical computer
or directly executed on hardware.

Acknowledgments
We thank D. Maitre for the careful reading of
the manuscript and many very useful comments.
This project is supported by CERN’s Quantum

1https://github.com/qiboteam/QiNNtegrate.

Technology Initiative (QTI). MR is supported
by CERN doctoral program. SC thanks the
TH hospitality during the elaboration of this
manuscript.

References
[1] Nicholas Metropolis and S. Ulam. The

monte carlo method. Journal of the Amer-
ican Statistical Association, 44(247):335–
341, 1949.

[2] Russel E. Caflisch. Monte carlo and quasi-
monte carlo methods. Acta Numerica,
7:1–49, 1998.

[3] Huicong Zhong and Xiaobing Feng. An effi-
cient and fast sparse grid algorithm for high-
dimensional numerical integration, 2022.

[4] Zoubin Ghahramani and Carl Rasmussen.
Bayesian monte carlo. In S. Becker,
S. Thrun, and K. Obermayer, editors, Ad-
vances in Neural Information Processing
Systems, volume 15. MIT Press, 2002.

[5] Jürgen Schmidhuber. Deep learning in neu-
ral networks: An overview. Neural Net-
works, 61:85–117, 2015.

[6] G. Peter Lepage. A New Algorithm for
Adaptive Multidimensional Integration. J.
Comput. Phys., 27:192, 1978.

[7] G. Peter Lepage. Adaptive multidimensional
integration: VEGAS enhanced. J. Comput.
Phys., 439:110386, 2021.

[8] Stefano Carrazza and Juan M. Cruz-
Martinez. VegasFlow: accelerating Monte
Carlo simulation across multiple hard-
ware platforms. Comput. Phys. Commun.,
254:107376, 2020.
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[57] Adrián Pérez-Salinas, Juan Cruz-Martinez,
Abdulla A. Alhajri, and Stefano Carrazza.

11



Determining the proton content with a
quantum computer. Physical Review D,
103(3), feb 2021.

[58] Leonardo Banchi and Gavin E. Crooks.
Measuring analytic gradients of general
quantum evolution with the stochastic pa-
rameter shift rule. Quantum, 5:386, jan
2021.

[59] M. J. D. Powell. An efficient method for
finding the minimum of a function of sev-
eral variables without calculating deriva-
tives. Comput. J., 7:155–162, 1964.

[60] Dong C. Liu and Jorge Nocedal. On the
limited memory bfgs method for large scale
optimization. Math. Program., 45, aug 1989.

[61] David J. Wales and Jonathan P. K. Doye.
Global optimization by basin-hopping and
the lowest energy structures of lennard-
jones clusters containing up to 110 atoms.
The Journal of Physical Chemistry A,
101(28):5111–5116, jul 1997.

[62] Richard D. Ball et al. The path to proton
structure at 1% accuracy. Eur. Phys. J. C,
82(5):428, 2022.

[63] Richard D. Ball et al. An open-source ma-
chine learning framework for global analy-
ses of parton distributions. Eur. Phys. J. C,
81(10):958, 2021.

[64] Paolo Solinas, Simone Caletti, and Gio-
vanni Minuto. Quantum gradient evaluation
through quantum non-demolition measure-
ments. Eur. Phys. J. D, 77(5):76, 2023.

[65] Rodolfo Carobene, Alessandro Candido,
Javier Serrano, Stefano Carrazza, and
Edoardo-Pedicillo. qiboteam/qibosoq: Qi-
bosoq 0.0.3, July 2023.

[66] Leandro Stefanazzi, Ken Treptow, Neal
Wilcer, Chris Stoughton, Salvatore Mon-
tella, Collin Bradford, Gustavo Cancelo,
Shefali Saxena, Horacio Arnaldi, Sara Suss-
man, Andrew Houck, Ankur Agrawal, Helin
Zhang, Chunyang Ding, and David I Schus-
ter. The qick (quantum instrumentation
control kit): Readout and control for qubits
and detectors, 2022.

12


	Introduction
	Methodology
	Quantum Machine Learning in a nutshell
	Circuit's ansatz
	Derivative of a quantum circuit
	Solving integrals with quantum circuits

	Results
	Toy Model
	The u-quark PDF
	Normalized by construction
	Integrating on a real qubit

	Conclusion
	Acknowledgments
	References

