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“Solving” ODEs 

Given : t > 0, 𝑓:ℝ𝑑 → ℝ𝑑 , 𝑥0 ∈ ℝ𝑑

Return : 𝑥 𝑡 ∈ ℝ𝑑such that :
𝑥 0 = 𝑥0
ሶ𝑥 = 𝑓 𝑥

Problem 1 : Initial Value Problem

ሶ𝑥 = 𝑓 𝑥
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Amplitude Encoded Solution Quantum Algorithms

Quantum algorithms with super-polynomial advantage return the 
solution as amplitude encoded state, complexity 𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝒅 :
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For these algorithms [1] proved “non-quantumness” overheads:

𝑂 𝑒𝛿(𝐴)𝑡 + 𝜇 𝐴

Orthonormality of eigenstates :

𝜇 𝐴 = 𝐴†𝐴 − 𝐴𝐴†
1/2

Spectral gap 

𝛿 𝐴 = 𝑅𝑒(𝜆)max 𝐴 − 𝑅𝑒(𝜆)min(𝐴)
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[1] Dong An et al. “A theory of quantum differential equation solvers: limitations and fast-forwarding”. 



Koopman Von Neuman (KvN) Formalism

The framework [2]  maps arbitrary classical dynamics to 
Hermitian dynamics in infinite Hilbert spaces.

• Wavefunction : Probability to be in a state at a given time

𝜓 ≔ න
−∞

+∞

𝜓 𝑥 𝑥 𝑞𝑑𝑥

𝜓 𝑥 2 = 𝑃 𝑥 𝑡 = 𝑥

• Hamiltonian : Time evolution = Integration of ODE

ሶ𝑥 = 𝑓 𝑥 → 𝐻 = 𝑓 ො𝑞 Ƹ𝑝 + Ƹ𝑝𝑓 ො𝑞
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[2] B. O. Koopman, “Hamiltonian Systems and Transformation in Hilbert Space”



Quantum Algorithms based on KvN

Different strategies to reduce infinite to finite Hilbert spaces :

Π𝑘 = ෍

𝑘=0

𝑁

𝑘 𝑘
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• Truncation the Fock space [3] • Discretization of the phase space [4]

[3] A. Engel et al, “Linear embedding of nonlinear dynamical systems and prospects for efficient quantum algorithms”

[4] I. Joseph, “Koopman--von Neumann approach to quantum simulation of nonlinear classical dynamics”



Continuous Variables Quantum Algorithm

Set of universal CV gates in the infinite Hilbert space 

What if we assume perfect universal CV Quantum Computation ?
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Initial State, Accuracy, Chaos and Squeezing

Goal : Solve the IVP with a given accuracy 𝜖.

IVP → position eigenstate, which is a non-physical state 
“approximated” by squeezing the state vacuum with std 𝜎0 = 𝑒−𝑟

Given an upper bound on the Lyapunov exponent 𝝀

The std of the final state 𝜎𝑓 < 𝜎0𝑒
𝜆𝑡

Required initial squeezing power 𝑟 > 𝜆𝑡 + log(𝜖)

NB : For non-linear dynamics, may be a biased estimator
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𝜕𝑡𝑑 = 𝜆

𝑑 𝑡 = 𝑒𝜆𝑡𝑑0



Time Evolution, and Non-Gaussian Gates

𝑓 𝑥 = ෍

𝑘=0

𝐾

𝑎𝑘𝑥
𝑘 → 𝐻 = ෍

𝑘=0

𝐾

𝑎𝑘 𝑝, 𝑞𝑘

• Non-Linear ODE → Non-Gaussian Gates 

• Trotterization: explicit procedure to compute gate sequence for 
one–dimensional polynomial ODE of degree K

• Preliminary scaling : ∼ 𝑡 4𝐾
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Ƹ𝑝, ො𝑞𝑘 , +𝑡

𝑝2, −𝑠 𝑞𝑘+1, −𝑠 𝑠 = 𝑡/(𝑘 + 1)𝑝2, +𝑠 𝑞𝑘+1, +𝑠

𝑞3, −𝑟 Ƹ𝑝, ො𝑞𝑘−1 , −𝑟 𝑟 = 𝑠/6𝑞3, −𝑟 Ƹ𝑝, ො𝑞𝑘−1 , −𝑟



Initial Distribution Problem : Turning a bug into a feature

• Could be used to estimate Lyapunov exponents ?

• Could be used to characterize attractors ?
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Given : t > 0, 𝑓: ℝ𝑑 → ℝ𝑑, 𝑝0: ℝ
𝑑 → [0,1]

Return : p𝑡: ℝ
𝑑 → [0,1], such that :

∀𝑥 , 𝑃 𝑥 0 = 𝑥 = 𝑝0(𝑥)
ሶ𝑥 = 𝑓(𝑥)

∀𝑥 , 𝑃 𝑥 𝑡 = 𝑥 = 𝑝𝑡(𝑥)

Problem 2 : Initial Distribution Problem



Thank you
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Authors : Alice Barthe, Michele Grossi, Jordi Tura, Vedran Dunjko

Questions ?
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