Continuous Variables Quantum Algorithm for solving Ordinary Differential Equations

IEEE Quantum Week
Quantum Algorithms for Differential Equations Workshop
18/09/2023
Alice Barthe
“Solving” ODEs

Given: \(t > 0, \ f : \mathbb{R}^d \rightarrow \mathbb{R}^d, x_0 \in \mathbb{R}^d \)

Return: \(x(t) \in \mathbb{R}^d \) such that:

\[
\begin{align*}
 x(0) &= x_0 \\
 \dot{x} &= f(x)
\end{align*}
\]

Problem 1: Initial Value Problem

Given: \(t > 0, \ f : \mathbb{R}^d \rightarrow \mathbb{R}^d, x_0 \in \mathbb{R}^d \)

Return: \(x(t) \in \mathbb{R}^d \) such that:

\[
\begin{align*}
 x(0) &= x_0 \\
 \dot{x} &= f(x)
\end{align*}
\]
Amplitude Encoded Solution Quantum Algorithms

Quantum algorithms with super-polynomial advantage return the solution as **amplitude encoded state**, complexity $\text{polylog}(d)$:

$$ |x\rangle = \frac{1}{\|x\|_2} \sum_{k=1}^{d} x_k |k\rangle $$

For these algorithms [1] proved “non-quantumness” overheads:

$$ O \left(e^{\delta(A) t} + \mu(A) \right) $$

Spectral gap

$$ \delta(A) = \text{Re}(\lambda_{\text{max}}(A)) - \text{Re}(\lambda_{\text{min}}(A)) $$

Orthonormality of eigenstates:

$$ \mu(A) = \|A^\dagger A - AA^\dagger\|^{1/2} $$

A. Barthe - QTI CERN
Koopman Von Neuman (KvN) Formalism

• **Wavefunction** : Probability to be in a state at a given time
 \[|\psi\rangle := \int_{-\infty}^{+\infty} \psi(x) |x\rangle_q dx \]
 \[|\psi(x)|^2 = P(x(t) = x) \]

• **Hamiltonian** : Time evolution = Integration of ODE
 \[\dot{x} = f(x) \rightarrow H = f(\hat{q})\hat{p} + \hat{p} f(\hat{q}) \]

Quantum Algorithms based on KvN

Different strategies to reduce infinite to finite Hilbert spaces:

- **Truncation** the Fock space [3]
- **Discretization** of the phase space [4]

\[
\Pi_k = \sum_{k=0}^{N} |k\rangle \langle k|
\]

Continuous Variables Quantum Algorithm

Set of **universal CV gates** in the infinite Hilbert space

What if we assume perfect universal CV Quantum Computation?

- Vacuum state
- Displacement operator
- Squeeze operator
- Rotation operator
- Cubic operator

Flowchart:

- Squeeze
- Displace
- Time Evolution
- Position Measurement

- Vacuum state
- Squeezed state
- Displaced state
- Time evolved state
- Measurement

A. Barthe - QTI CERN
Goal: Solve the IVP with a given accuracy ε.

IVP \rightarrow position eigenstate, which is a non-physical state “approximated” by squeezing the state vacuum with std $\sigma_0 = e^{-r}$

Given an upper bound on the Lyapunov exponent λ

The std of the final state $\sigma_f < \sigma_0 e^{\lambda t}$

Required initial squeezing power $r > \lambda t + \log(\varepsilon)$

NB: For non-linear dynamics, may be a biased estimator
Time Evolution, and Non-Gaussian Gates

\[f(x) = \sum_{k=0}^{K} a_k x^k \rightarrow H = \sum_{k=0}^{K} a_k \{p, q^k\} \]

- Non-Linear ODE → Non-Gaussian Gates
- Trotterization: explicit procedure to compute gate sequence for one–dimensional polynomial ODE of degree K
- Preliminary scaling: \(\sim t 4^K \)

\[
\begin{align*}
 s &= \sqrt{t/(k+1)} \\
 r &= \sqrt{s/6} \\
 p^2, -s &\rightarrow q^{k+1}, -s \\
 p^2, +s &\rightarrow q^{k+1}, +s \\
 q^3, r &\rightarrow \{\hat{p}, \hat{q}^{k-1}\}, -r \\
 q^3, -r &\rightarrow \{\hat{p}, \hat{q}^{k-1}\}, -r
\end{align*}
\]
Initial Distribution Problem : Turning a bug into a feature

Problem 2 : Initial **Distribution** Problem

<table>
<thead>
<tr>
<th>Given :</th>
<th>$t > 0, f : \mathbb{R}^d \to \mathbb{R}^d, p_0 : \mathbb{R}^d \to [0,1]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return :</td>
<td>$p_t : \mathbb{R}^d \to [0,1]$, such that :</td>
</tr>
<tr>
<td></td>
<td>$\forall x, P(x(0) = x) = p_0(x)$</td>
</tr>
<tr>
<td></td>
<td>$\dot{x} = f(x)$</td>
</tr>
<tr>
<td></td>
<td>$\forall x, P(x(t) = x) = p_t(x)$</td>
</tr>
</tbody>
</table>

- Could be used to estimate Lyapunov exponents ?
- Could be used to characterize attractors ?
Thank you

Authors: Alice Barthe, Michele Grossi, Jordi Tura, Vedran Dunjko

Questions?