Continuous Variables Quantum Algorithm for solving Ordinary Differential Equations

IEEE Quantum Week

Quantum Algorithms for Differential Equations Workshop

18/09/2023

Alice Barthe

A. Barthe - QTI CERN

"Solving" ODEs

$$\dot{x} = f(x)$$

Problem 1 : Initial Value Problem

Given :
$$t > 0, f : \mathbb{R}^d \to \mathbb{R}^d, x_0 \in \mathbb{R}^d$$

Return : $x(t) \in \mathbb{R}^d$ such that :
 $x(0) = x_0$
 $\dot{x} = f(x)$

A. Barthe - QTI CERN

2

Amplitude Encoded Solution Quantum Algorithms

Quantum algorithms with super-polynomial advantage return the solution as amplitude encoded state, complexity polylog(d):

$$x\rangle = \frac{1}{\|x\|_2} \sum_{k=1}^{a} x_k |k\rangle$$

For these algorithms [1] proved "non-quantumness" overheads: $O\left(e^{\delta(A)t} + \mu(A)\right)$ Spectral gap $\delta(A) = Re(\lambda)_{\max}(A) - Re(\lambda)_{\min}(A)$ Orthonormality of eigenstates : $\mu(A) = \|A^{\dagger}A - AA^{\dagger}\|^{1/2}$

[1] Dong An et al. "A theory of quantum differential equation solvers: limitations and fast-forwarding".

Koopman Von Neuman (KvN) Formalism

The framework [2] maps arbitrary classical dynamics to Hermitian dynamics in infinite Hilbert spaces.

• Wavefunction : Probability to be in a state at a given time

$$\begin{aligned} |\psi\rangle &\coloneqq \int_{-\infty}^{+\infty} \psi(x) \, |x\rangle_q dx \\ |\psi(x)|^2 &= P(x(t) = x) \end{aligned}$$

A. Barthe - QTI CERN

• Hamiltonian : Time evolution = Integration of ODE $\dot{x} = f(x) \rightarrow H = f(\hat{q})\hat{p} + \hat{p}f(\hat{q})$

Universiteit

[2] B. O. Koopman, "Hamiltonian Systems and Transformation in Hilbert Space"

Quantum Algorithms based on KvN

Different strategies to reduce infinite to **finite Hilbert spaces** :

• Truncation the Fock space [3]

[3] A. Engel et al, "Linear embedding of nonlinear dynamical systems and prospects for efficient quantum algorithms"[4] I. Joseph, "Koopman--von Neumann approach to quantum simulation of nonlinear classical dynamics"

Universiteit

Continuous Variables Quantum Algorithm

Set of universal CV gates in the infinite Hilbert space

What if we assume perfect universal CV Quantum Computation ?

Initial State, Accuracy, Chaos and Squeezing

Goal : Solve the IVP with a given accuracy ϵ .

IVP \rightarrow **position eigenstate**, which is a **non-physical** state "approximated" by **squeezing** the state vacuum with std $\sigma_0 = e^{-r}$

Given an upper bound on the Lyapunov exponent λ

$$\partial_t d = \lambda$$

 $d(t) = e^{\lambda t} d_0$

The std of the final state $\sigma_f < \sigma_0 e^{\lambda t}$

Required initial squeezing power $r > \lambda t + \log(\epsilon)$

NB : For non-linear dynamics, may be a biased estimator

Time Evolution, and Non-Gaussian Gates

$$f(x) = \sum_{k=0}^{K} a_k x^k \to H = \sum_{k=0}^{K} a_k \{p, q^k\}$$

- Non-Linear ODE \rightarrow Non-Gaussian Gates
- Trotterization: explicit procedure to compute gate sequence for one-dimensional polynomial ODE of degree K
- Preliminary scaling : ~ $t 4^{K}$

Initial Distribution Problem : Turning a bug into a feature

Problem 2 : Initial **Distribution** Problem

Given :
$$t > 0, f : \mathbb{R}^d \to \mathbb{R}^d, p_0 : \mathbb{R}^d \to [0,1]$$

Return : $p_t : \mathbb{R}^d \to [0,1]$, such that :
 $\forall x, P(x(0) = x) = p_0(x)$
 $\dot{x} = f(x)$
 $\forall x, P(x(t) = x) = p_t(x)$

- Could be used to estimate Lyapunov exponents ?
- Could be used to characterize attractors ?

Thank you

Authors : Alice Barthe, Michele Grossi, Jordi Tura, Vedran Dunjko

Questions ?

A. Barthe - QTI CERN **10**