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In this work we put forward the inclusion of error mitigation routines in the process of training
Variational Quantum Circuit (VQC) models. In detail, we define a Real Time Quantum Error Miti-
gation (RTQEM) algorithm to coadiuvate the task of fitting functions on quantum chips with VQCs.
While state-of-the-art QEM methods cannot adress the exponential loss concentration induced by
noise in current devices, we demonstrate that our RTQEM routine can enhance VQCs’ trainability
by reducing the corruption of the loss function. We tested the algorithm by simulating and deploying
the fit of a monodimensional u-Quark Parton Distribution Function (PDF) on a superconducting
single-qubit device, and we further analyzed the scalability of the proposed technique by simulating
a multidimensional fit with up to 8 qubits.

In the era of Noisy Intermediate Scale Quantum
(NISQ) [1, 2] devices, Variational Quantum Algorithms
(VQA) are the Quantum Machine Learning (QML) mod-
els that appear more promising in the near future. They
have several concrete applications already validated, such
as electronic structure modelization in quantum chem-
istry [3–6], for instance. Different VQA ansatze have
been proposed, such as the QAOA [7], but they all share
as foundation a Variational Quantum Circuit (VQC) con-
sisting of several parametrized gates whose parameters
are updated during training.

Hardware errors and large execution times corrupt the
landscape in various ways, such as changing the position
of the minimum or the optimal value of the loss func-
tion, hindering NISQ [1, 2] devices’ applicability in prac-
tice for certain algorithms. Furthermore, VQC models
are known to suffer from the presence of Noise-Induced
Barren Plateaus (NIBPs) [8] in the optimization space,
leading to vanishing gradients. NIBPs are fundamentally
different from the noise-free barren plateaus discussed in
Refs [9–14]. In fact, approaches designed to tackle noise-
free barren plateaus do not seem to effectively address
the issues posed by NIBPs [8].

To overcome these limitations we either have to build
fault tolerant architectures carrying an usable amount of
logical qubits, or exploit the available NISQ hardware
by cleaning its results. While the first solution might
require significant technical advances, the second one is
often achieved with the help of quantum error mitigation
(QEM) [15]. Exponential loss concentration cannot be
resolved with error mitigation [16], but it is possible to
improve trainability by attempting to reduce the loss cor-
ruption. Therefore, we define here an algorithm to per-
form Real-Time Quantum Error Mitigation (RTQEM)
alongside a VQA-based QML training process.

In this work, we use in particular the Importance Clif-
ford Sampling (ISC) [17], which implements a learning-
based quantum error mitigation procedure [18]. The core
business of the learning-based QEM techniques is to ap-
proximate the noise with a parametric map which, once

learned, can be used to clean the noisy results. Linear
maps have the potential to improve overall trainability by
addressing challenges imposed by loss corruptions while
not affecting loss concentration itself [16]. The map’s pa-
rameters are learned during the QML training every time
the noise changes above a certain arbitrarily set thresh-
old.
We apply the RTQEM strategy to a series of mono-

dimensional and multi-dimensional regression problems.
Firstly, we train a VQC to tackle a particularly inter-
esting High Energy Physics problem: determining the
Parton Distribution Function (PDF) of the the u-quark,
one of the proton contents. In a second step, we define
a multi-dimensional target to study the impact of the
RTQEM procedure when the VQA involves an increas-
ing number of qubits.
Data re-uploading [19] is used to encode data into the

the model, while we implement an hardware-compatible
Adam [20] optimizer for the training. We calculate gradi-
ents with respect to the variational parameters using the
Parameter Shift Rule [21, 22] (PSR). This optimisation
scheme is ideal for studying the performance of RTQEM,
as the PSR formulas require a number of circuits to be
executed which scales linearly with the number of param-
eters. The greater the number of executions, the better
our algorithm must be to allow for training the model.
This setup is then used to perform the full u-quark

PDF fit on two different superconducting quantum de-
vices hosted in the Quantum Research Centre (QRC) of
the Technology Innovation Institute (TII).
The whole work has been realized using the Qibo

framework, which offers Qibo [23–26] as high-level
language API to write quantum computing algo-
rithms, Qibolab [27–29] as quantum control tool and
Qibocal [30, 31] to perform quantum characterization
and calibration routines.
The outline is as follows. In Section I we summarize the

process of quantum computing with the VQC paradigm,
providing also details about the ansatz and the PSR rule
we make use of to train the model. In Section II, we
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FIG. 1. RTQEM pipeline.

present the effects of noise during the training process
and in Section IIA an outline of the error mitigation
method we experimented with to alleviate them. Finally,
we report the results of our experiments both with noisy
simulations and real superconducting qubits deployment
in Section IV.

I. METHODOLOGY

A. A snapshot of Quantum Machine Learning

In the following we are going to consider Supervised
Machine Learning problems for simplicity, but what pre-
sented here can be easily extended to other Machine
Learning (ML) paradigms in the quantum computation
context. Quantum Machine Learning (QML) arises when
using Quantum Computing (QC) tools to tackle ML
problems [21, 32, 33].

In the classical scenario, given an n-dimensional in-
put variable x, a parametric model is requested to es-
timate a target variable y, which is related to x =
(x1, . . . , xn) through some hidden law y = g(x). The
model estimations yest are then compared with some
measured groundtruth data ymeas by evaluating a loss
function J(yest, ymeas), which quantifies the capability of
the model to provide an estimate of the underlying law
g. The variational parameters θ of the model are then
optimized to minimize (or maximize) the loss function J ,
leading, in turn, to better predictions yest.
In Quantum Machine Learning, we translate this

paradigm to the language of quantum computing. In par-
ticular, parametric quantum gates, such as rotations, are
used to build Variational Quantum Circuits (VQC) [34],
which can be used as parametric models in the machine
learning process. Once a parametric circuit U(θ) is de-
fined, it can be applied to a prepared initial state |ψi⟩ of
a quantum system to obtain the final state |ψf ⟩, which
is used to evaluate the expected value of an arbitrary

chosen observable B̂,

f(θ)B̂ = ⟨ψi| U†(θ)B̂ U(θ)|ψi⟩ . (1)

In what follows we remove the dependence on B̂ of the
symbol f for simplicity. Various methods exist to embed
input data into a QML process [35–37]; in this work, we
employ the re-uploading strategy [19]. The estimates of
y can be obtained by calculating expected values of the
form (1). Finally, the circuit’s parameters are optimized
to minimize (or maximize) a loss function J , pushing f
as close as possible to the unknown law g.

B. A variational circuit with data-reuploading

The data-reuploading [19] method is built by defining
a parameterized layer made of fundamental uploading
gates which accepts the input data x to be uploaded.
Then, the re-uploading of the variable is achieved by
building a circuit composed of a sequence of uploading
layers. Inspired by [38], we build our ansatz by defining
the following fundamental uploading gate,

L(xj |θl,j) = Rz(θ3 xj + θ4)Ry(θ1 κ(xj) + θ2) , (2)

where xj is the j-th component of the input data and
with θl,j we denote the four-parameters vector compos-
ing the gate which uploads xj at the ansatz layer l. The
information xj is uploaded twice in each L, first in the
Rz and second in the Ry through an activation function
κ(xj). To embed the n components of x into the ansatz,
we build a n-qubit circuit based on the Hardware Effi-
cient Ansatz, where the single-qubit gates are the funda-
mental uploading gates, and entanglement is generated
with CNOT gates, as shown in Fig. 2.
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FIG. 2. Circuit ansatz to reupload the data x with n qubits and Nlayers layers.

C. Gradient descent on hardware

Gradient-based optimizers [20, 39–41] are commonly
employed in machine learning problems, particularly
when using Neural Networks [42] (NNs) as models. In the
QML context, VQCs are utilized to construct Quantum
Neural Networks [43], which serve as quantum analogs
of classical NNs. Consequently, we are naturally led to
believe that methods based on gradient calculation could
be effective.

1. The parameter shift rule

In order to perform a gradient descent on a NISQ de-
vice we need a method that is robust to noise and ex-
ecutable on hardware. This cannot be done as in the
classical case following a back-propagation [39] of the in-
formation through the network. We would need to know
the f values during the propagation, but accessing this
information would collapse the quantum state. More-
over, standard finite-differences methods are not appli-
cable due to the shot noise when executing the circuit a
finite number of times. An alternative method is the so
called Parameter Shift Rule [22, 44–47] (PSR), which al-
lows for exactly evaluating quantum gradients directly on
the hardware [22]. Given f as introduced in (1) and con-
sidering a single parameter µ ∈ θ affecting a single gate
whose hermitian generator has at most two eigenvalues,
the PSR allows for the calculation

∂µf = r
(
f(µ+)− f(µ−)

)
, (3)

where ±r are the generator eigenvalues, µ± = µ± s and
s = −π/4r. In other words, the derivative is calculated
by executing twice the same circuit U(θ) in which the
parameter µ is shifted backward and forward of s. A
remarkable case of the PSR involves rotation gates, for
which we have r = 1/2 and s = π/2 [21].

2. Evaluating gradients of a re-uploading model

In order to perform a gradient-based optimization, we
first need to calculate the gradient of a loss function J

with respect to the variational parameters of the model.
Then, the derivatives are used to perform an optimization
step in the parameters’ space by following the steepest
direction of the gradient,

θt+1 = θt − η∇J(θi) , (4)

where η is the learning rate of the gradient descent al-
gorithm. Since our QML model is a circuit in which the
variational parameters are rotation angles, such deriva-
tives can be estimated by the PSR (3). However, even
in the simplest case, this kind of procedure can be com-
putationally expensive, since for each parameter we need
two evaluations of f , as illustrated in (3). Given a VQC
with p variational parameters, a training set size ofNdata,
and a budget of Nshots for each function evaluation, the
total computational cost amounts to 2pNshotsNdata cir-
cuit executions. This high number of evaluation is useful
for testing the effectiveness of error mitigation routines,
which can be applied to every circuit execution of the
algorithm. We followed the same optimization stategy
described in [48, 49], defining a Mean-Squared Error loss
function,

Jmse(x
i|θ) = 1

Ndata

Ndata∑
i

[
f(xi,θ)− g(xi)

]2
, (5)

where the superscript denotes the i-th variable x of the
dataset. Note that this differs from the subscripts used
so far to denote the components of the variable x.
Our total execution time is dominated by the effect of

circuit switching and network latency costs rather than
shot cost. Therefore, we prefer to reduce the number
of iterations at the expense of increasing the number of
shots per iteration. In this context, the Adam [20] opti-
mizer stands out due to its robustness when dealing with
complex parameters landscapes.

II. NOISE ON QUANTUM HARDWARE

Recognizing the impact of noise on the optimization
landscape is crucial in practical quantum computing im-
plementations. In the presence of a general class of local
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noise models, for many important ansatzes such as Hard-
ware Efficient Ansatz (HEA), the gradient decreases ex-
ponentially with the depth of the circuit d. Typically, d
scales polynomially with the number of qubits n, causing
the gradient to decrease exponentially in n. This phe-
nomenon is referred to as a Noise-Induced Barren Plateau
(NIBP) [50]. NIBPs can be seen as a consequence of the
loss function converging around the value associated with
the maximally mixed state. Furthermore, noise can cor-
rupt the loss landscape in various ways such as changing
the position of the minimum.

In order to quantify these effects, we consider a noise
model composed of local Pauli channels acting on qubit
j before and after each layer of our ansatz,

Pj(σ) = qjσ (6)

where −1 < qX , qY , qZ < 1 and σ denotes the lo-
cal Pauli operators {σx, σy, σz}. The overall channel is

P =
⊗N

j Pj . We also include symmetric readout noise
M made of single-qubit bit-flip channels with bit-flip
probability (1 − qM )/2. This results in the noisy expec-
tation value,

fnoisy = Tr
[
Z
(
M◦P ◦ LNlayers

◦ · · · ◦ P ◦ L1 ◦ P
)
(|0⟩⟨0|)

]
.

(7)
The NIBP translates into a concentration of the expec-
tation value around 0 [50],

|fnoisy| < 2qnMq
2Nlayers+2

(
1− 1

2n

)
. (8)

Certain loss functions exhibit noise resilience, i.e. their
minimum remains in the same position under the influ-
ence of certain noise models, even though its value may
change. Contrarily, our loss function (5) is not noise resis-
tant. We aim to explore the extent to which it is possible
to mitigate the noise and enhance the training process of
VQCs with non-resistant loss functions.

A. Error Mitigation

Recent research [51–56] has focused on developing
methods to define unbiased estimators of the ideal ex-
pected values leveraging the knowledge about the noise
that we can extract from the hardware. However, these
estimators are also affected by exponential loss concen-
tration, impliying that NIBPs cannot be resolved with-
out requiring exponential resources through error miti-
gation [16].

In the regime where loss concentration is not severe,
it is also not straightforward for error mitigation to im-
prove the resolvability of the noisy loss landscape, thus
alleviating exponential concentration.

The variance of the error-mitigated estimators is typi-
cally higher than that of the mean estimator [57], setting
up a trade-off between the improvement due to bias re-
duction and the worsening caused by increased variance.

Target

Learn noise map

Training set 

Noise parameters 

FIG. 3. ICS error mitigation.

Most methods have a negative impact on resolvability,
but linear ansatz methods show a neutral effect. Among
all of them, Importance Clifford Sampling [17] stands out
for its scalability and resource cost.

1. Importance Clifford Sampling (ICS)

Suppose we want to estimate the expected value of an
observable Ô for the state ρ prepared by a quantum cir-
cuit C0. In a realistic situation we are going to obtain a
noisy expected value ⟨Ô⟩0noisy different from the true one

⟨Ô⟩0. The idea behind Importance Clifford Sampling
(ICS) is to generate a set of training Clifford circuits

S =
{
Ci
}n

i=1
with the same circuit frame as the original

one C0. The classical computation of noiseless expected
values of Clifford circuits is efficient [58, 59]. This en-

ables us to compute the ideal expected values
{
⟨Ô⟩i

}n

i=1
through simulation, as well as the noisy expected values{
⟨Ô⟩inoisy

}n

i=1
when evaluating them on hardware.

When Ô is a Pauli string, the noise-free expected val-
ues will concentrate on −1, 0, 1 [58]. Furthermore, as
discussed in [17], not all the clifford circuits are error sen-
tive. In particular, we only need circuits whose expected
values on Pauli’s are ±1. We refer to these circuits as
non-zero circuits for simplicity. Unfortunately, sampling
non-zero circuits is exponentially rare when the number
of qubits increases, thus a strategy has to be defined to
efficiently build a suitable training set. We follow the
ICS algorithm [17], in which non-zero circuits are built
by adding an additional layer of Pauli gates to zero cir-
cuits. These gates can be merged with the ones following
so that the depth does not increase.

The generated set is then used to train a model to
learn a mapping between ⟨Ô⟩noisy and ⟨Ô⟩. The struc-
ture of the model ℓ can be inspired by considering the
action of a global depolarising channel with depolarising
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parameter λ,

⟨Ô⟩noisy = (1− λ)⟨Ô⟩+ λ

d
Tr(Ô) , (9)

where d = 2N denotes the dimension of the Hilbert space
and 0 < λ < 4N/(4N − 1). Focusing on Pauli strings and
allowing λ to take any value, we arrive at the phenomeno-
logical error model,

⟨Ô⟩inoisy = (1− λiC)⟨Ô⟩i , (10)

from which we can calculate λiC for each circuit in the
training set. This set of depolarising parameters, char-
acterized by the mean value λ0 = ⟨λC⟩S and standard
deviation σ, allows to define an effective depolarising pa-
rameter for mitigating the initial circuit,

λeff = λ0 −
σ2

1− λ0
. (11)

This translates into the noise map,

ℓ
(
⟨Ô⟩|λeff

)
=

(1− λ0)

(1− λ0)2 + σ2
⟨Ô⟩noisy . (12)

The average depolarising rate λ0 scales proportionally
with the number of gates, while the standard deviation
σ is proportional to its square root [17]. This implies that
the model performs better as the circuit depth increases.

The noise map (12) effectively handles symmetric read-
out noise, but fails with asymmetric noise. For these sit-
uations, we employ Bayesian iterative unfolding [60] to
mitigate measurement errors in advance.

A schematic representation of the described algorithm
is reported in Fig. 3.

III. THE RTQEM ALGORITHM

We implement an Adam optimization mitigating both
gradients and predictions following the procedure pre-
sented in Sec. II A 1.

In a real quantum computer, small fluctuations of the
conditions over time, such as temperature, may result in
a change of the shape of the noise sufficient to deteriorate
results. Therefore, we compute a metric

D(z, ℓ(z)) = |z − ℓ(z)| (13)

at each optimization iteration, which quantifies the dis-
tance between a target noiseless expected value z and
the mitigated estimation ℓ(z). These expected values are
calculated over a single non-zero test circuit to maxi-
mize the bias. If an arbitrary set threshold value εℓ
is exceeded, the noise map is relearnt from scratch. A
schematic representation of the proposed procedure is re-
ported in Alg. 1.

Algorithm 1: RTQEM

Set Nupdate, Nepoch, k = 0 ;
Initialize VQC parameters θk, noise map ℓ ;
Define target noiseless expectation value z ;
Define metric D(z, ℓ(z)) to check ℓ reliability;

for k < Nepochs do
if D(z, ℓ(z)) > εℓ then

learn ℓk;
ℓ← ℓk;

end
compute ℓ(yest);

calculate J
[
ℓ(yest),ymeas

]
;

for p ∈ θk do
compute ℓ(∂pJ) via PSR;

end
θk+1 ← Adam(θk);

end

IV. VALIDATION

We propose two different experiments to test the
RTQEM algorithm introduced above. Firstly, in
Sec. IVA, we simulate the training of a VQC on both
a single and a multi-qubit noisy device. Whereas, in
Sec. IVB, the same procedure is deployed on a real super-
conducting single-qubit chip. The programs to reproduce
such simulations can be found at [61].

A. Simulation

In this section, we benchmark different levels of error
mitigation by conducting both noisy and noiseless clas-
sical simulations with Nshots = 10000 shots as outlined
in Tab. I. The VQC shown in Fig. 2 is used as ansatz
and the noise is described by the noise model presented
in Section II. We first consider a static-noise scenario in
Section IVA1, while in Section IVA2 we let the noise
vary over time.

Training Noise RTQEM QEM at the end
Noiseless
Noisy
fQEM

RTQEM

TABLE I. Mean-Squared Error Values quantifying the dis-
tance between the target NNPDF4.0 measurements and the
estimates obtained averaging on Nruns prediction sets.

1. Static-noise scenario

The following simulations are performed using a static
local Pauli noise model where we set the following noise
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parameters qM = 0.005, qX = 0.007, qY = 0.003 and
qZ = 0.002.
We first consider a one-dimensional target, namely, the

u-quark Parton Distribution Function (PDF) for a fixed
energy scale Q0 with varying momentum fraction x sam-
pled from the interval [0, 1]. A logarithmic sampling is
used to improve the resolution of the x ∼ (0, 0.1) range
where the shape of the function is more rugged. The cor-
responding PDF values are provided by the NNPDF4.0
grid [62]. The obtained results are presented in Fig. 4,
demonstrating how the RTQEM approach allows the
training to converge to the right solution.

The noisy simulation has a clear limitation due to loss
concentration 7, which prevents the predictions from sur-
passing the bound y ≃ 0.85. The same limit can be ob-
served in Fig. 4, where the loss value is not able to fall
below the threshold with the unmitigated training. If we
try to correct the predictions only after the training (f-
QEM), we see how the QEM makes the region above the
bound accessible, but the fit does not improve. This is
expected, as the noise shifts the position of the minima of
the loss function making it impossible to recover the true
minimum with just a final rescaling pass. However, by
gradually cleaning up the loss function landscape during
the training, the correct minimum is recovered, and the
fit converges to the target function.

To better understand how the algorithm scales with
the number of qubits we study the problem of fitting a
multi-dimensional function. In particular, we consider

fndim(x;θ) =

Ndim∑
i=1

[
cos (θixi)

i + (−1)i−1θixi
]
, (14)

where both data x and parameters θ have dimension
Ndim and the index i runs over the problem dimensions.
The target fndim is rescaled in order to occupy the range
[0, 1]. We consider Ndata values for each xi ∈ x homoge-
neously distributed in the range [0, 1]. The ansatz is the
Ndim-qubit circuit 2 with three layers.

As the dimensionality of the problem increases, and
consequently, the number of qubits, the noise-induced
bound is lower, hindering the description of the function
in a region of its domain. By applying the RTQEM al-
gorithm, we manage to achieve lower values of the loss
function, thereby improving the quality of the fit (see
Fig. 5). These results are confirmed by computing the
Mean Squared Error (MSE) metric,

MSE =
1

Ndata

Ndata∑
j=1

(ȳj,est − yj,meas)
2 , (15)

where ȳjest is the average estimate over Nruns. The MSE
associated to each fit is shown in Tab. II.

Regarding the gradients, it is important to note that
there are no significant differences between the raw gra-
dients and the exact gradients (see Appendix A). This
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FIG. 4. Estimates of u-quark PDF associated to Ndata = 50
momentum fraction values sampled logarithmically in [0, 1].
The NNPDF4.0 measures (black line) are compared with re-
sults obtained through noiseless simulation (green line), noisy
simulation (blue line), noisy simulation with mitigation ap-
plied to the final predictions (yellow line) and real-time mit-
igated noisy simulation (red line). The effective depolaris-
ing parameter λeff is 0.09 ± 0.01. The final predictions are
computed averaging on Nruns = 100 predictions calculated
for each of the Ndata points. The confidence intervals are
obtained using one standard deviation from the mean. The
bottom plot shows the loss function history for each training
scenario.

Target MSEnoiseless MSEnoisy MSEfqem MSErtqem

u PDF 0.008 0.018 0.023 0.008
cos 4d 0.003 0.043 0.140 0.003
cos 6d 0.002 0.083 0.214 0.002
cos 8d 0.001 0.118 0.360 0.004

TABLE II. Mean squared error distances between the target
functions and the VQC fitting model trained under the dif-
ferent conditions of Tab. I.

means that we are in a regime where the loss concentra-
tion is not severe, and there is still room for error mitiga-
tion to improve trainability by mitigating other unwanted
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FIG. 5. Predictions for the multidimensional function fndim with Ndim = 4, 6, 8 from left to right. The exact predictions
(black line) are compared with results obtained through noiseless simulation (green line), noisy simulation (blue line), noisy
simulation with mitigation applied to the final predictions (yellow line) and real-time mitigated noisy simulation (red line). The
effective depolarising parameters λeff are 0.22± 0.02 (Ndim = 4), 0.31± 0.03 (Ndim = 6) and 0.41± 0.02 (Ndim = 8). The final
predictions are computed averaging on Nruns = 20 predictions calculated for each of the Ndata = 30 points. The confidence
intervals are obtained using one standard deviation from the mean. The bottom plot shows the loss function history for each
training scenario.

effects in the landscape due to the noise.

2. Evolving-noise scenario

To study the performance of the method with noise
evolution, we consider a random change in the Pauli pa-
rameters of the noise model in each epoch. In particular,
the initial parameters vector q0 = (q0X , q

0
Y , q

0
Z) is moved

in its three-dimensional space following a procedure sim-
ilar to a Random Walk (RW) on a lattice. Namely, the
component qj is evolved from epoch k to epoch k + 1 as

q
(k+1)
j = qkj + rδ, (16)

where r ∼ {−1,+1} and the step length is sampled from
a normal distribution δ ∼ N (0, σδ). We refer to an evo-

lution performing N steps governed by σδ as RWN
σδ
. The

readout noise parameter is kept fixed at the value of
qM = 0.005. In this evolving scenario, when the met-
ric (13) exceeds a certain threshold εℓ, the mitigation
parameter λeff (11) is updated.
To evaluate the effect of relearning the noise on the

training process, we track the evolution of the loss func-
tion for various values of εℓ, as shown in Fig. 6. We
aim for a reduction in the loss function to correspond
to a closer approximation to the noise-free parameters.
Therefore, we recalculate the loss function values at each
iteration using the noisy training parameters, but in a

0 20 40 60 80 100
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C
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ss

93 updates

18 updates

8 updates

0 updates

FIG. 6. Four RTQEM training simulations sharing the
same initial conditions. The initial local Pauli parameters
q0 = (0.005, 0.005, 0.005) are evolved under a RW0.002. The
readout noise parameter has been kept fixed to qM = 0.005.
The target function is the u-quark PDF, and Nlayers = 4
are used with Ndata = 30 and η = 0.05. For each train-
ing simulation a different noise threshold value was used:
εℓ = {0, 0.05, 0.1, 0.2}. As a result, λeff is re-learned u =
{93, 18, 8, 0} times, respectively. We show the loss function
values computed using the training parameters at each itera-
tions but deployed in a noiseless scenario.

noiseless simulation. As the threshold decreases, the
noise map is updated more frequently. It is expected
that a lower threshold will enhance the training until it
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reaches a certain minimum value, characterized by the
standard deviation of λeff. Interestingly, even a few up-
dates to the noise map can lead to significantly lower
values for the loss function. For instance, the difference
between the minimum values of the loss function when
not updating the noise map and when updating it 94
times in a training of 100 epochs is O

(
10−3

)
. This sug-

gests that a minor additional classical computational loss
can significantly improve the training.

B. Training on hardware

We set up our full-stack gradient descent training on
a superconducting device hosted by the Quantum Re-
search Center (QRC) in the Technology Innovation In-
stitute (TII). The high-level algorithm is implemented
with Qibo [23–26] and then translated into pulses and
executed on the hardware through the Qibolab [27, 28]
framework (see Appendix B). The qubit calibration and
characterization have been performed using Qibocal [30,
31]. In particular, we use one qubit of a five-qubits
chip constructed by QuantWare [63] and controlled using
Qblox [64] instruments. We refer to this device as qw5q.

The u-quark PDF for a fixed energy scale Q0 is tar-
geted using the ansatz presented above. We take Ndata =
15 values of the momentum fraction x sampled from the
interval [0, 1].

An estimate to the bound imposed by the noise is pro-
vided, in this case, by the assignement fidelity of the used
qubits, which are collected in dedicated runcards describ-
ing the current status of the QRC devices [65]. To avoid
the u-quark PDF comfortably resting below this thresh-
old and thereby disguising the effect of the NIBP, we
opted to expand it to cover the range [0, 1]. One might
wonder whether a similar, but opposite, trick could be
employed in case that the bound intercepts the target
function. Therefore, compressing the function to make it
lie below the bound and avoid any sort of limitations on
the predictions. While this is a perfectly viable method
in theory, it is essentially pointless in practice. The com-
pression of the function, indeed, will also increase the pre-
cision needed to resolve it, which translates in a larger
number of shots required by each prediction. Further-
more, as the bound scales exponentially in the number
of qubits [8], the number of shots needed will increase
exponentially as well.

Param Nepochs Nshots Ntrain Nparams η NumPy seed
Value 50 500 15 16 0.1 1234

TABLE III. Hyper parameters of the gradient descent on qw5q

We perform a gradient descent on the better calibrated
qubit of qw5q using the parameters collected in Tab. III.

10−4 10−3 10−2 10−1 100

x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

u
f

(x
)

No mitigation on qw5q

RTQEM on qw5q

NNPDF4.0 measurements

Qubit’s fidelity f = 0.906

0 10 20 30 40 50

Epochs

10−2

10−1

L
os

s

No mitigation on qw5q

RTQEM on qw5q

FIG. 7. Above, estimates of Ntarget = 30 values of the u-
quark PDF obtained by training the best qubit of the qw5q

chip. The target values (black dashed line) are compared
with our predictions after an unmitigated training (blue line)
and a training with RTQEM (red line). The estimations are
computed averaging over Nruns = 10 predictions for each x
with the trained θbest. The same prediction sets allow to
calculate the standard deviations of the estimates, which are
then used to draw the 1σ confidence intervals. Below, loss
function history as function of the optimization epochs. The
effective depolarising parameter is λeff = 0.07± 0.03.

The training has been performed for both the unmiti-
gated and the RTQEM approaches. After training, we
repeat Nruns = 10 times the predictions for each one of
Ntarget = 30 target values of x sampled logarithmically
from [0, 1]. The final estimate to the average prediction
and its corresponding standard deviation are computed
out of the Nruns repetitions.

The RTQEM process leads to better compatibility
overall and, in particular, is able to overcome the bound
set by the noise represented as a black horizontal line,
as shown in Fig. 7. Indeed, the mitigated fit leads to
a smaller MSE compared to the unmitigated one, as re-
ported in Tab. IV. This proves that the RTQEM proce-
dure gives access to regions which are naturally forbidden
to the raw training.

As a second test, we push forward the RTQEM training
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x

−0.2
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0.2

0.4

0.6

0.8

1.0
u
f

(x
)

Train on qw5q, exec. on qw5q

Train on iqm5q, exec. on qw5q

Train on qw5q, exact simulation

NNPDF4.0 measurements

Qubit’s fidelity f = 0.906

FIG. 8. Estimates of Ntarget = 30 values of the u-quark PDF
obtained by training the better calibrated qubits of qw5q and
iqm5q, respectively with assignment fidelities fqw5q = 0.906
and fiqm5q = 0.967. The target values (black dashed line) are
compared with our RTQEM predictions obtained by training
for Nepochs = 100 on both qw5q (red line) and iqm5q (yellow
line). We also show the predictions computed deploying in
exact simulation mode the best parameters obtained through
RTQEM training on qw5q (green line). The final average and
standard deviation of the predictions are computed out of
Nruns = 20 repetition for each x using the parameters θbest

learnt during training. In particular, the 1σ confidence inter-
vals are shown in the plot. The effective depolarising param-
eter is λeff = 0.08± 0.02.

by performing a longer optimization. We use the same
hyper-parameters of Tab. III but set Nepochs = 100, with
the aim of finding more reliable parameters. We repeat
the optimization twice, adopting the same initial con-
ditions but changing the device. We use the aforemen-
tioned qw5q and a different five-qubit chip constructed by
IQM [66] and controlled using Zurich [67] Instruments.
We refer to this device as iqm5q.
If the parameters obtained through RTQEM procedure

are noise independent, we expect them to be generally
valid. Namely, the optimal parameters obtained for one
device, should lead to a valid fit when deployed to a to-
tally different one. This is illustrated in Fig. 8, where we
report the results obtained by training individually qw5q
and iqm5q with the same initial conditions, and then
deploying the two sets of obtained parameters on qw5q
only. The plotted estimates are computed by averaging
on Nruns = 20 repeated predictions.

Finally, to further verify that the obtained parameters
are indeed noise-independent, we deploy the model ob-
tained by training qw5q via RTQEM in an exact simula-
tor (green line in Fig. 8).

We calculate the MSE value for each described ex-
periment following 15. All the results are collected in
Tab. IV, and confirm that the RTQEM training leads to
noise-indipendent modelization.

V. CONCLUSION

In this work we presented a novel Real Time Quan-
tum Error Mitigation routine to improve the training
process of Variational Quantum Algorithms. The Im-
portance Clifford Sampling method is used at each step
of the learning process to clean from the noise both the
gradients of the loss function and the predictions. The
RTQEM algorithm allows for improved training by re-
ducing loss corruption without worsening loss concentra-
tion, allowing the optimiser to follow the descent towards
lower local minima of the loss function. We finally tested
the RTQEM procedure on a real superconducting qubit,
finding it to improve the consistency of the fit by over-
coming the bounds imposed by the hardware’s noise.
We proved that the proposed algorithm is helpful for

training VQC models in the presence of noise. In partic-
ular, if the noise of the system remains steady or changes
slowly enough, it is possible to train the noise map only a
few times during training, making the computational cost
comparable to the unmitigated training process. More-
over, by mitigating the noise during the training, it is
possible to obtain parameters close to the noise-free pa-
rameters. This enables us to use them on another device
that may be affected by a different noise.
The extension of this approach to other QML pipelines

that make use of expected values as predictors, as well
as to other QEM methods, represents an interesting re-
search aveneu that we leave to a future work.
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[36] V. Havĺıček, A. D. Córcoles, K. Temme, A. W. Harrow,
A. Kandala, J. M. Chow, and J. M. Gambetta, Nature
567, 209 (2019).

[37] M. Incudini, F. Martini, and A. D. Pierro, “Struc-
ture learning of quantum embeddings,” (2022),
arXiv:2209.11144 [quant-ph].
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Appendix A: Gradients evolution

During the VQC training, the noisy gradients are of the same magnitude as the exact ones, indicating that we are
in a regime where exponential concentration is not severe, as shown in Fig. 9.
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FIG. 9. Average gradients as function of the optimization epochs. A noiseless simulation (green lines) is compared with
unmitigated noisy simulation (blue lines) and RTQEM (red lines) for Ndim = 4, 6, 8 from the left to the right plots.

Appendix B: Native gates

The native gates of the QRC superconducting quantum processors are RX(±π/2), RZ(θ), and CZ gates [65]. They
constitute a universal quantum gate set. These gates are compiled into microwave pulses following a specific set of
rules [27]. For a circuit to be executable on hardware, it needs to be decomposed into these native gates. For instance,
a general single-qubit unitary beaks into a sequence of five native gates,

U(θ, ϕ, λ) = RZ(ϕ)RX(−π/2)RZ(θ)RX(π/2)RZ(λ) . (A1)
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