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MOTIVATION

Detectors simulation :

 Tremendous amount of time required by Monte Carlo based simulation 

→ Generative Adversarial Networks

Quantum Machine Learning :

 Compressed data representation in quantum states 

 Expect faster training with less number of parameters

→ Potential advantage of Quantum GAN

 Initial work using qGAN model constructed by IBM 

→ limited in reproducing a probability distribution over discrete variables

Quantum Generative Adversarial Networks

Why Quantum Generative Adversarial Networks (GAN)? 

Explore different prototypes of quantum GAN to improve the model
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Quantum GAN

Practical qGAN model constructed by IBM 

Quantum Generative Adversarial Networks

 Hybrid model : Quantum Generator + Classical Discriminator

 Efficient in loading and learning a probability over discrete values 

→ 𝑝𝑔 𝜙 to approach 𝑝𝑟𝑒𝑎𝑙

https://dl.acm.org/doi/proceedings/10.5555/2969033

 2D image summed over longitudinal direction 

 Normalized & Binned into 32 = 8 pixels 

 Averaged over 20,000 samples 

https://dl.acm.org/doi/proceedings/10.5555/2969033
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Limitation

IBM qGAN model

Quantum Generative Adversarial Networks

Need to find alternative ways to reproduce a “set” of images

 Limited in reproducing an average probability distribution over pixels

 Aim to reproduce a distribution over continuous variables

Dual-PQC GAN model (in collaboration with Cambridge Quantum Computing) 

Continuous Variable Quantum GAN
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Dual-PQC GAN model

 PQC1 – Reproduce the distribution over 2𝑛1 images of size 2𝑛

 PQC2 – Reproduce amplitudes over 2n pixels on one image 

𝟐𝒏𝟏 images of size 𝟐𝒏

Quantum Generative Adversarial Networks

Role of single generator shared by two parameterized quantum circuits (pqc)

𝑛2 = 2𝑛
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Application of Dual-PQC GAN in HEP

Quantum Generative Adversarial Networks

n = 2, n1 = 4, n2 = 4, depthg1 = 2, depthg2 = 16  2D image summed over 

longitudinal direction 

 Binned into 4 pixels & 

normalized

Real Generated
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 Continuous-variable QC : Fundamental information-carrying units = Qumodes

 CV Neural network with CV gates (N. Killoran et al. 2019) → Construct CV qGAN

CV qGAN

Quantum GAN with a generator constructed by Continuous-variable NN 

Quantum Generative Adversarial Networks

Hybrid model : Quantum Generator & Classical Discriminator

Fully Quantum model : Quantum Generator & Quantum Discriminator
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Increasing latent space dimension

Quantum Generative Adversarial Networks

Latent space dimension = 3

 Classical GAN, nparams ≈ 45000 

 Hybrid CV qGAN, nparams ≈ 260

Faster convergence 

for CV qGAN Can achieve similar performance 

with 170x less parameters

 2D image summed over 

longitudinal direction 

 Binned into 3 pixels 

 No normalization required

Real Images https://arxiv.org/abs/2101.11132

https://arxiv.org/abs/2101.11132


9

Conclusion

Dual-PQC GAN & CV qGAN

Quantum Generative Adversarial Networks

 Two different prototypes of quantum GAN to reproduce  a set of images

1) Dual-PQC GAN, 2) CV qGAN

 Able to reproduce images with reduced size (3~4 pixels) 

Future works

- Test fully quantum CV qGAN model

- Increase problem size 

- Extend to other use-cases (e.g. Image generation for Earth Observation)
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QUESTIONS?

su.yeon.chang@cern.ch 

Quantum Generative Adversarial Networks
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Appendix A : qGAN in HEP (details)

Quantum Generative Adversarial Networks

Preparation of Initial State

1. Uniform : Equiprobable Superposition of | ۧ0 ,…, | ۧ𝑁 − 1
2. Normal : Normally distributed with empirical mean and std of training set

3. Random : Randomly distributed over | ۧ0 ,…, | ۧ𝑁 − 1

Classical Discriminator

 PyTorch Discriminator

 512 nodes + Leaky ReLU → 256 nodes + Leaky ReLU → single-node + sigmoid

 AMSGRAD optimizer for both generator and discriminator
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Appendix B : qGAN in HEP (Results)

Quantum Generative Adversarial Networks

RandomUniform
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Appendix C : Why n
2

> n ? 

Quantum Generative Adversarial Networks

 Quantum Circuit consists of reversible gates → Unitary matrix

 Inputs = computational basis → 𝑀 𝑗 = jth column at 𝑀𝑃𝑄𝐶2

→ Cannot train PQC2 with n qubits if M(j) do not form an orthonormal basis

Case n2 = n

𝑀 𝑗 =

𝐼0𝑗

1

2𝑒𝑖𝜙0𝑗

⋮

𝐼2𝑛−1𝑗

1

2𝑒
𝑖𝜙2𝑛−1𝑗

, 𝜙𝑖𝑗 ∈ [0, 2𝜋[ where 𝐼𝑖𝑗 = Amplitude at pixel i for image j → Normalized

 First 2n columns of PQC2 is constructed as : 𝑀𝑃𝑄𝐶2(𝑖) = 𝑖 ⊗ 𝑀 𝑖 where 𝑖 ∈ { 0 , … , |2𝑛 − 1ۧ},

→ ⟨𝑀𝑃𝑄𝐶2(𝑖) 𝑀𝑃𝑄𝐶2(𝑗)ۧ = ⟨𝑖|𝑗 𝑀 𝑖 𝑀 𝑗 = ቊ
1 𝑖𝑓 𝑖 = 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

→ 22n – 2n columns can be chosen freely to construct a unitary matrix

Case n2 = 2n
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Appendix D : Qubit vs. CV 

Quantum Generative Adversarial Networks

CV Qubit

Fundamental Unit Qumodes  {|𝑥ۧ}𝑥∈𝑅 , 𝜓 = ∫ 𝑑𝑥 𝜓 𝑥 𝑥 𝑑𝑥 Qubits |0/1ۧ,  𝜓 = 𝛼 0 + 𝛽|1ۧ

Relevant Operators Position ො𝑥 , Momentum Ƹ𝑝

Mode operators ො𝑎, ො𝑎𝑡
Pauli Operators 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧

Common Gates Displacement      𝐷𝑖 𝛼 = exp 𝛼 ො𝑎𝑖
𝑡 − 𝛼∗ ො𝑎𝑖

Rotation             𝑅𝑖 𝜙 = exp 𝑖𝜙 ො𝑛𝑖

Squeezing           𝑆𝑖 𝑧 = exp
1

2
(𝑧∗ ො𝑎𝑖

2 − 𝑧ො𝑎𝑖
𝑡2)

Beam Splitters    𝐵𝑆𝑖𝑗 𝜃, 𝜙 = exp 𝜃(𝑒𝑖𝜙 ො𝑎𝑖
𝑡 ො𝑎𝑗 − 𝑒−𝑖𝜙 ො𝑎𝑖 ො𝑎𝑗

𝑡)

Kerr                   𝐾𝑖 𝜅 = exp(𝑖𝜅𝑛𝑖
2)

Phase Shift, Rotation, Hadamard, 

Controlled-U gate 

Measurements Homodyne |𝑥𝜙ۧ⟨𝑥𝜙|, ො𝑥𝜙 = cos(𝜙)ො𝑥 + sin 𝜙 Ƹ𝑝

Heterodyne           
1

𝜋
|𝛼ۧ⟨𝛼|

Photon Counting   |𝑛ۧ⟨𝑛|

Pauli Measurements

0/1 ⟨0/1|, ± ± , | ± 𝑖ۧ⟨±𝑖|

https://doi.org/10.22331/q-2019-03-11-129

https://doi.org/10.22331/q-2019-03-11-129
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Appendix E : CVNN

Quantum Generative Adversarial Networks

 Fully connected layer : 𝒙 → 𝜙(𝑊𝒙 + 𝒃) 𝑊= Weight matrix, 𝒃 = bias, 𝜙 𝑥 = Activation function 

 Weight matrix W decomposed using singular value decomposition :

1. Multiplication by an orthogonal matrix 𝑂1 → Apply an interferometer 𝑈1

2. Multiplication by a diagonal matrix Σ → Apply a squeezing gate 𝑆 𝐫 |𝐱ۧ = 𝑒−
1

2
Σ𝑖𝑟𝑖|Σ𝐱ۧ

3. Multiplication by another orthogonal matrix 𝑂2 → Apply an interferometer 𝑈2
4. Addition of bias 𝒃 → Apply a displacement gate 𝐷 𝜶 |𝐱ۧ = |𝐱 + 𝜶ۧ

5. Non-linear function 𝜙(𝑥) → Apply a Kerr gate Φ|𝐱ۧ = |𝜙(𝐱)ۧ

𝑊 = 𝑂2Σ𝑂1

https://doi.org/10.1038/ncomms13795 Squeezing Displacement Non-gaussianInterferometer

𝐿 𝒙 ∝ 𝜙 𝑊𝒙 + 𝒃

https://doi.org/10.1038/ncomms13795

