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Deep Neural Networks (DNNs) come into the limelight in High Energy Physics (HEP) in order
to manipulate the increasing amount of data encountered in the next generation of accelerators.
Recently, the HEP community has suggested Generative Adversarial Networks (GANs) to replace
traditional time-consuming Geant4 simulations based on the Monte Carlo method. In parallel with
advances in deep learning, intriguing studies have been conducted in the last decade on quantum
computing, including the Quantum GAN model suggested by IBM. However, this model is limited
in learning a probability distribution over discrete variables, while we initially aim to reproduce a
distribution over continuous variables in HEP.

We introduce and analyze a new prototype of quantum GAN (qGAN) employed in continuous-
variable (CV) quantum computing, which encodes quantum information in a continuous physical
observable. Two CV qGAN models with a quantum and a classical discriminator have been tested to
reproduce calorimeter outputs in a reduced size, and their advantages and limitations are discussed.

I. INTRODUCTION

Modern society confronts an overwhelming amount of
data, which should be treated with high precision and
limited resources. Especially, in High Energy Physics
(HEP), next High Luminosity Large Hadron Collider (HL-
LHC) phase will collect and analyze an increasing amount
of data with complex physics and small statistical error
and it is therefore highly demanding in terms of compu-
tational resources. Traditional Monte Carlo based sim-
ulation is however very time-consuming, thus new ap-
proaches using Deep Neural Networks (DNNs) have been
proposed to replace it.

Generative Adversarial Networks (GANs) [1] arise as
one of the solutions for fast simulation. Based on its two
neural networks, generator and discriminator, trained al-
ternatively, the GAN model has been widely explored
thanks to its performance to generate images with com-
plex structures at much higher speed. In HEP, the varia-
tions of GAN, such as CaloGAN [2], have achieved to
show similar performance to that of full Monte-Carlo
based simulation, but with less amount of time taken for
the computation. Meanwhile, quantum computing has
emerged as another important pillar in modern studies
attracting the attention of many researchers due to its
potential to execute some tasks with an exponentially re-
duced amount of resources in time and space compared
to a classical processor [3].

Advances in both deep learning and quantum comput-
ing have made it possible to extend the GAN paradigm
to the quantum world, with the introduction of Quan-
tum GAN (qGAN) models [4, 5]. Unfortunately, the
most well-known qGAN model proposed by IBM [5],
with a classical discriminator and a quantum generator
in a qubit architecture, is limited to reproducing the
probability distribution over discrete variables, while the

calorimeters outputs that we would like to treat are con-
tinuous.

Continuous-variable (CV) quantum computation of-
fers an insight to solve the problem. Unlike the well-
known qubit architecture, which uses discrete fundamen-
tal information-carrying units, CV quantum computing
uses qumodes which are continuous by their nature [6].
Taking a complementary position to the qubit architec-
ture, the CV architecture has shown its efficiency in a
number of papers that studies its applications, including
CV neural networks (CVNNs) [7].

Our work introduces a new prototype of qGAN, imple-
mented in CV architecture. The model has been tested
to simulate continuous detector outputs, with a reduced
size, and its results are analyzed and discussed in this
paper.

II. CONTINUOUS-VARIABLE (CV) QUANTUM
COMPUTING

Continuous-variable (CV) architecture is a paradigm of
quantum computing, where the information is encoded
in a continuous physical observable, for instance the
strength of the electromagnetic field. In this model, the
fundamental information-carrying unit is represented by
a qumode, which is a quantum state of bosonic modes in
the quantized electromagnetic field. The quantum state
of N qumodes is often expressed as a superposition of
position basis, {|x〉}

x∈RN or Fock basis, {|n〉}i∈N :

|ψ〉 =

∫
RN

ψ(x) |x〉dx =
∞∑
i=0

〈n|ψ〉 |n〉 . (1)

By combining a set of common CV gates, such as dis-
placement D(α), rotation R(φ), squeezing S(z), beam-
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S(z4) D(α4) Φ(φ4)

FIG. 1: Structure of a CV neural network layer. [7]

splitters BS(θ, φ), etc, it is possible to build CV Neu-
ral Networks (CVNN), parameterized quantum circuits
which perform exactly the same mathematical transfor-
mation as a fully connected layer.

Consider that a N -dimensional vector x is represented
by an eigenstate |x〉 of the position operator x̂ with |x〉 =⊗N

i=1
|xi〉 = D(x) |0〉⊗N where |0〉 is the vacuum state.

Then, the sequence of CV gates shown on FIG. 1 per-
forms the following transformation L which is equivalent
to a single classical fully connected layer

L |x〉 = Φ ◦ D ◦ U2 ◦ S ◦ U1 |x〉 ∝ |φ(Wx+ b)〉 , (2)

where U is an interferometer [8], W the weight matrix, b
the bias and Φ the non-linear activation function. More
detailed explanations on CVNN can be found in Ref.[7]

III. CV QGAN

This section proposes two different prototypes of
continuous-variable Quantum GAN (CV qGAN) mod-
els: one with both quantum generator and discriminator

(Fully quantum model), and the second with quantum
generator and classical discriminator (Hybrid model).
FIG. 2 summarizes the structure of the two models.

In both cases, N qumodes quantum generators are ini-
tialized with the first qumode displaced by a random
noise z ∈ N (0, 1), while keeping all the other qumodes
to be vacuum :

|initial〉 = |z〉 ⊗ |0〉⊗N−1 = D(z) |0〉 ⊗ |0〉⊗N−1
. (3)

It then applies CVNN layers shown on FIG. 1 to the ini-
tial state to transform it into the targeted state. The
difference between the two prototypes comes from the
measurement at the end of the generator. In fully quan-
tum case, the quantum generator is directly connected
to the quantum discriminator, without any measurement
between them. The expectation value of the position op-
erator at qumode N , 〈x〉 is measured at the end of the
discriminator while discarding all the other qumodes. An-
other classical sigmoid function is then applied to return
a predicted label, ℓ ∈ [0, 1], indicating the authenticity of
the sample.

On the other hand, the hybrid model constructs a fake
image by measuring the position expectation values at all
N qumodes, 〈x〉, at the end of the generator. This fake
image is passed to the classical discriminator, to return
a prediction used to update the generator parameters.

This CV qGAN has been tested only for three qumodes,
i.e., n = 3, due to the limitation in simulation computing
time and memory. The original calorimeter outputs of
size 25× 25 are averaged over the longitudinal direction,
and then binned into 3 pixels, as shown on FIG. 4a.

The model is implemented in Strawberryfields [9, 10]
for CV quantum computing and Pennylane [11, 12] for
automatic quantum gradient descent.

|0〉⊗N−1

Generator Discriminator
Discard

|z ∼ N (0, 1)〉x 〈xN〉
sigmoid
−−−−−→ ℓ

No Measurement

(a) Fully quantum model.

|x〉

|x〉

|0〉⊗N−1

Quantum
Generator

〈x〉

|z ∼ N (0, 1)〉
x

Classical
Discriminator

ℓ

(b) Hybrid model.

FIG. 2: Schematic diagrams of continuous-variable quantum GAN models, manipulating classical data embedded in
quantum states.
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As shown on FIG. 3, the generator and the discrimi-
nator loss functions converge towards the expected value
in all three cases. However, the mean images produced
by the fully quantum and hybrid models with dg = 5 dif-
fer from the targeted values, showing a limitation in the
simulations. Unlike the previous two cases, the result for
the hybrid model with dg = 3 manifests a convergence of
the mean image towards the targeted output.

(a) (b)

(c) (d)

(e) (f)

FIG. 3: Mean images (a,c,e) and losses (b,d,f) obtained
from the CV qGAN model simulations. Figures (a,b)
display the result using the fully quantum model with
dg = 5, figures (c,d) the result using the hybrid model,

with dg = 5 and figures (e,f) with dg = 3.

The limitation is also revealed throughout the whole
set of produced images, shown on FIG. 4. Notably, the
images generated by the fully quantum model on FIG. 4b
have significantly different shapes from the real images
shown on FIG. 4a. The most critical problem is that at
least half of the images contain negative energy values,
which are certainly unphysical. The situation is slightly
better in the hybrid model with dg = 5 displayed on
FIG. 4c. In spite of the difference in energy levels, the
shape of images is similar to the real one, with a peak
at x = 1. Furthermore, most of the images are above
zero except three or four samples. It is also notable that
the CV qGAN model can fall into a common GAN fail-
ure observed in classical cases. Despite the convergence

in mean images for the hybrid model with dg = 3, the
individual images shown on FIG. 4d exhibit an obvious
mode collapse failure [13] where the generator produces
only a small variety of samples.

(a) Real images. (b) Fully quantum, dg = 5

(c) Hybrid, dg = 5 (d) Hybrid, dg = 3

FIG. 4: Comparison of the real training samples (a)
with the images generated by the fully quantum CV

qGAN with dg = 5 (b) and the hybrid CV qGAN, with
dg = 5 (c) and dg = 3 (d).

Increasing latent space dimension To complete this
work, hybrid CV qGAN model is tested with latent space
dimension 3, i.e., by initializing all three qumodes in the
generator with random noises and compared with a clas-
sical case as shown on FIG. 5. Both models use a classical
discriminator with the same structure. But CV qGAN
consists of the quantum generator with dg = 8, while
the classical one employs a classical generator having a
similar size as the discriminator.

FIG. 5d and FIG. 5f reveal convergence in mean image
as well as individual images reproduced by CV qGAN.
In addition, unphysical behavior exhibited in the previ-
ous simulations is no more observed, as all the samples
have positive energy. It is possible to find few samples
with a peak at x = 2 on FIG. 5f, which exist in the real
samples on FIG. 4a Remarkably, CV qGAN can imitate
the performance of classical GAN with 264 parameters
for the generator, which are 170 times less compared to
44947 parameters used in the classical case. Although it
is impossible to make a direct comparison between the
models due to large oscillations in loss functions shown
on FIG. 5b, the study still gives an insight into the size
of CV generator recommended for successful training.

Furthermore, the simulations have demonstrated that
CV qGAN reveals convergence before 100 epochs while
classical GAN started converging after 1000 epochs, ex-
hibiting an advantage in terms of computational com-
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FIG. 5: Losses (a,b), mean images (c,d) and image
samples (e,f) obtained from the classical GAN (a,c,e)

and the hybrid CV qGAN (b,d,f) simulations with latent
space dimension 3.

plexity with respect to the time to convergence. Unfor-
tunately, the time needed to simulate the quantum gen-
erator is still the limiting factor to reach full convergence
(350 min per epoch).

IV. CONCLUSIONS AND FUTURE WORK

In this work, we suggest a new prototype of qGAN us-
ing continuous-variable quantum computing. Thanks to
an equivalence between classical and CV neural networks,
it is possible to build a CV qGAN, having an architec-
ture similar to the classical GAN. The current CV qGAN
model has limitation in generating correctly the targeted
image samples and it exhibits a mode collapse failure,
which is often observed in the classical GAN. Stability
and convergence are improved by increasing the latent
space dimension, a result that is consistent with the find-
ing reported in other works concerning the importance
of the initialisation step [5] .

To further improve the model, we will explore tech-
niques to speed the training (and in particular the gradi-
ent computation step) while, at the same time increasing
the number of qumodes (and therefore the model rep-
resentational power). The current simulations require a
tremendous amount of time (several days) for a small
number of qumodes (<5). Different entanglement config-
uration will be investigated together with mechanisms re-
producing regularisation that are usually applied to clas-
sical networks, in order to improve the qGAN model and
reproduce the real image data accurately in future stud-
ies.
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