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Abstract
Machine learning has been used in high energy physics (HEP) for a long time, primarily at the
analysis level with supervised classification. Quantum computing was postulated in the early 1980s
as way to perform computations that would not be tractable with a classical computer. With the
advent of noisy intermediate-scale quantum computing devices, more quantum algorithms are
being developed with the aim at exploiting the capacity of the hardware for machine learning
applications. An interesting question is whether there are ways to apply quantum machine learning
to HEP. This paper reviews the first generation of ideas that use quantum machine learning on
problems in HEP and provide an outlook on future applications.

1. Introduction

Particle physics is a branch of science aiming to understand the fundamental laws of nature by studying the
most elementary components of matter and forces. This can be done in controlled environments with
particle accelerators such as the Large Hadron Collider (LHC), or in uncontrolled environments such as
cataclysmic events in the cosmos. The Standard Model of particle physics is the accomplishment of decades
of theoretical work and experimentation. While it is an extremely successful effective theory, it does not allow
the integration of gravity, and is known to have limitations. Experimentation in particle physics requires
large and complex datasets, which poses specific challenges in data processing and analysis.

Recently, machine learning has been played a significant role in the physical sciences. In particular, we are
observing an increasing number of applications of deep learning to various problems in particle physics and
astrophysics. Beyond typical classical approaches [1] (boosted decision tree (BDT), support vector machine
(SVM), etc), state-of-the-art deep learning techniques (convolutional neural networks, recurrent models,
geometric deep learning, etc) are being successfully deployed in a variety of tasks [2, 3].

The ambitious high luminosity LHC (HL-LHC) program in the next two decades and beyond will
require enormous computing resources. It is interesting to ask whether new technologies such as quantum
machine learning could possibly help overcome this computational challenge. The recent development of
quantum computing platforms and simulators available for public experimentation has lead to a general
acceleration of research on quantum algorithms and applications. In particular, quantum algorithms have
recently been proposed to tackle the computational challenges faced in particle physics data processing and
analysis. Beyond explicitly writing quantum algorithms for specific tasks [4–8], quantummachine learning is
a way to learn quantum algorithms to achieve a specific task, similarly to classicalmachine learning.

This review paper of how quantum machine learning is used in high energy physics (HEP) is organized
as follows. An overview of the fields of quantum computing and quantum machine learning are first
provided in sections 2 and 3. We review the applications of quantum machine learning algorithms for
particle physics using quantum annealing QA in Sections 4 and quantum circuits in section 5. We provide a
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field-wide view of unpublished work and upcoming results in section 6. We conclude with discussions on the
future of quantum machine learning applications in HEP in section 7.

2. Quantum computing

More than three decades after Richard Feynman’s proposal of performing simulations using quantum
phenomena [9], the first practical quantum computers are finally being built. The scope of calculations has
significantly expanded, with a range of promising applications emerging, including optimization [10–12],
chemistry [13, 14], machine learning [15–17], particle physics [4–8], nuclear physics [18–20] and quantum
field theory [21–24].

2.1. Quantum circuit model
Quantum computers were formally defined for the first time by David Deutsch in his 1985 seminal paper
[25], where he introduced the notion of a quantum Turing machine, a universal quantum computer based on
qubits and quantum circuits. In this paradigm, a typical algorithm consists of applying a finite number of
quantum gates (unitary operations) to an initial quantum state, and measuring the expectation value of the
final state in a given basis at the end. Deutsch found a simple task that would require a quantum computer
less steps to solve than all classical algorithms, thereby showing that quantum Turing machines are
fundamentally different and can be more powerful than classical Turing machines. Since then, many
quantum algorithms with a lower computational complexity than all known classical algorithms have been
discovered, the most well-known example being Shor’s algorithm to factor integers exponentially faster than
our best classical algorithm [26]. Other important algorithms include Grover’s algorithm invented in 1996 to
search an element in an unstructured database with a quadratic speed-up [27], and the
Harrow-Hassidim-Lloyd algorithm, invented in 2008 to solve linear systems of equations [28].

However, all those algorithms require large-scale fault-tolerant quantum computers to be useful, while
current and near-term quantum devices will be characterized by at least three major drawbacks:

(a) Noise: the coherence time (lifetime) of a qubit and the fidelity of each gate (accuracy of the computation)
have increased significantly during the past years, but are still too low to use the devices for applica-
tions beyond small proof-of-principle experiments involving only a few qubits—even if tricks like error-
mitigation are used (see for example [29]).

(b) Small number of qubits: current near-term quantum computers consist of between 5 and 100 qubits,
which is not enough for traditional algorithms such as Shor’s or Grover’s to achieve a quantum advantage
over classical algorithms. While steady improvements are made, increasing the number of qubits is not
just a matter of scaling current solutions: Problems of connectivity, cross-talk, and the consistent quality
of qubits require new engineering approaches for larger systems.

(c) Low connectivity: most current quantum devices have their qubits organized in a certain lattice, where
only nearest-neighbors can interact. While it is theoretically possible to run any algorithm on a device
with limited connectivity—by ‘swapping’ quantum states from qubit to qubit—the quantum advantage
of some algorithms can be lost during the process [30].

Therefore, a new class of algorithms, the so-called near-term intermediate-scale quantum (NISQ)
algorithms [31], have started to emerge, with the goal of achieving a quantum advantage with those small
noisy devices. One of the main classes of NISQ algorithms is based on the concept of variational circuits:
fixed-size circuits with variable parameters that can be optimized to solve a given task. They have shown
promising results in quantum chemistry [13] and machine learning [32] and will be discussed in more detail
in section 3.1.

2.2. Quantum annealing
Another paradigm of quantum computing, called adiabatic quantum computing (or quantum annealing, QA)
was introduced several years after the gate model described above [33, 34] and has been implemented by the
company D-Wave. In theory, this paradigm is computationally equivalent to the circuit model and Grover’s
algorithm can for instance be ported to QA [35]. It is based on the continuous evolution of quantum states to
approximate the solution of quadratic unconstrained binary optimization (QUBO) problems, of the form

min
x

E(x) =
n∑

i,j=1

Jijxixj +
n∑

i=1

hixi (1)

where xi∈{0, 1} and J ij and hi are real numbers defining the problem.
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This general problem belongs to the complexity class NP-Hard, meaning that it can probably not be
solved exactly in polynomial time even by a quantum computer8. QA is a heuristic proposed to approximate
the solution of a QUBO problem, or even solve it exactly when the input parameters J ij and hi have some
particular structures [35].

More precisely, solving a QUBO instance is equivalent to finding the ground-state of the problem
Hamiltonian:

HP =
n∑

i,j=1

Jijσ
z
i σ

z
j +

n∑
i=1

hiσ
z
i (2)

where σz
i is the Z-Pauli matrix applied to the ith qubit. QA consists of initializing the system in the

ground-state of a simpler Hamiltonian, such as

HI =
n∑

i=1

σx
i (3)

and slowly evolving the system from HI to HP during a total time T, for instance by changing the
Hamiltonian along the trajectory:

H(t) =
(
1− t

T

)
HI +

t

T
HP (4)

The quantum adiabatic theorem tells us that if the transition between the two Hamiltonians is ‘slow enough’,
the system will stay in the ground-state during the whole trajectory, including at the end for our problem
Hamiltonian. Measuring the final state will therefore give us the solution to our QUBO problem. The main
caveat of this approach is that the maximum allowed speed of the evolution can fall rapidly with the system
size (sometimes exponentially low), removing any potential advantage compared to classical algorithms.
Knowing if a given problem (or class of problems) can take advantage of QA is an open research question,
which is why research on QA applications has been driven largely by empirical studies.

Many optimization problems, including in machine learning, can be mapped to a QUBO instance,
making QA an attractive platform for quantum machine learning, as developed in section 3.2.

3. Quantummachine learning

Quantum machine learning has evolved in recent years as a subdiscipline of quantum computing that
investigates how quantum computers can be used for machine learning tasks—in other words, how quantum
computers can learn from data [17, 36]. One can approach this question in three different ways, which reflect
similar angles established in quantum computing:

• the foundational approach that reformulates learning theory in a quantum setting [37, 38];
• efforts to find quantum algorithms that speed up machine learning with regards to computational com-
plexity measures [39–42];
• a near-term perspective that develops new machine learning applications tailor-made for NISQ devices
[43].

Currently, classical machine learning is a distinctively empirical discipline, pioneered by research
conducted in industry. It is therefore not surprising that quantum machine learning research is also
dominated by the near-term perspective, a fact reflected in the selection of papers discussed in this review.

The near-term perspective of quantum machine learning starts from the quantum devices available today
and asks how they can be used to solve a machine learning problem. Circuit-based quantum computers have
been predominantly used to compute the prediction of a quantummachine learning model that can be trained
classically [32, 44], while quantum annealers have been proposed to optimize classical models [45, 46].

3.1. Quantum circuits as trainable models
A machine learning model can often be written as a function f (x, θ) that depends on an input data point
x—for example describing the pixels of an image or a vectorized text document—as well as trainable
parameters θ. The result of the model, f, is interpreted as a prediction, e.g. revealing the label of x in a
classification task. For simplicity, we will here assume a scalar output.

8 While a proof is still to be found, complexity theorists believe that quantum computers will not lead to exponential speed-ups for
NP-Complete or NP-Hard problems.
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Figure 1. Simplified example of a variational quantum circuit used for classification. A feature x from the input data is loaded into
the circuit by associating it with the angle of a rotation gate. The angle θ of another rotation gate is used as a variable parameter
that can be trained to adjust the circuit. The three qubits are represented in the standard circuit notation as wires, and gates are
represented by symbols acting on the wires. The unitaries V1 and V2 summarise arbitrary quantum operations applied to the
qubits. The first qubit is measured in the end, and an expectation value is computed by averaging over measurement results. This
expectation is interpreted as the prediction of a quantum model.

We know from the basics of quantum mechanics that the result of a quantum circuit is a measurement
with a probabilistic outcome—for example, a qubit measured in state |0 ⟩ or |1 ⟩. However, the expectation
value of a quantum observable—a central concept in quantum theory—is a deterministic value. In simple
terms, the expectation value is the weighted average of a measurement result. For example, after taking 1000
measurements (‘shots’) of a qubit, of which 900 resulted in the outcome |1 ⟩ an estimate of the expectation of
the qubit state would be 0.9. We can interpret this expectation as a prediction, and the quantum circuit is
thereby serving as a quantum classifier or quantum machine learning model.

But how do we make the output of the quantum model depend on inputs x and trainable parameters θ?
The central idea is to associate physical control parameters with the input features and individual
parameters. For instance, in most circuit-based quantum computers we have control over the rotation angle
of qubits. Assuming for now that x is a single scalar, we can therefore rotate one qubit by an angle of exactly x
to encode the input9. Using the same strategy for a parameter θ, considered to be a scalar as well for now, we
can rotate another (or the same) qubit by an angle θ. Physically, there is no difference in how the inputs and
free parameters are treated, but there are profound conceptual differences; see for example [47]. These
rotations can be performed as part of a larger quantum algorithm that consists of other gates, and which is
described by an overall unitary U(x, θ) that depends on the input and parameter (see figure 1). The crux is
that now the expectation value of the circuit with respect to an observableM is formally given by

fq(x,θ) =
〈
0
∥∥U(x,θ)†MU(x,θ)

∥∥0〉,
and can be interpreted as the prediction of x. In short, the quantum circuit is used as a machine learning
model.

Of course, the heart of machine learning is to adapt a model to data. The circuit can be trained by
adjusting the parameters θ by a classical optimization routine that minimizes a standard cost function
comparing predictions with the correct target outputs, such as the mean square loss. Trainable circuits are
also known as variational or parametrized circuits (or sometimes, a bit misleadingly, as quantum neural
networks), and were initially proposed in the context of quantum chemistry [48]. The optimization can be
performed by using the quantum computer to evaluate f q(x, θ) at different values for θ, and using a classical
co-processor to find better candidates for the parameter with respect to the cost function, using either
gradient-free or finite-difference based optimization methods.

Inspired from quantum control, quantum machine learning has recently developed an elaborate
framework of gradient-based optimization [49, 50] that has already been implemented in powerful software
frameworks [51, 52], which may prove superior to gradient-free methods when quantum computers get
bigger [53]. An essential result was to notice that in many cases used in practice, one can compute the
analytic or exact gradient from f q(x, θ+ s) and f q(x, θ− s), where s is a constant which depends on the way
that θ enters the quantum circuit—in other words, which gate is used to encode the parameter. While this is
reminiscent of a finite-difference rule, the important fact is that s is a macroscopic variable such as π/2,
which makes estimating the two values by repeated measurements on a noisy device possible. Furthermore,
the resulting gradient is not an approximation, but the true analytic gradient. The ability to compute

9 Note that x has to be rescaled to lie in the interval [0, 2π] for the encoding to be unique.
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gradients of variational circuits has potential consequences that reach far beyond quantum machine
learning, since it makes quantum computing amenable for the paradigm of differentiable programming.

Finally, it should be mentioned that there are many other ways that variational circuits are employed in
quantum machine learning. For example, the genuinely probabilistic nature of quantum measurements
suggests that variational circuits can be used as an ansatz for generative models. In the generative mode, the
result of a quantum measurement is interpreted as a sample of a probabilistic machine learning model that
defines a probability distribution over the data that may depend on parameters [54, 55]. This has amongst
other proposals led to quantum generative adversarial networks [56, 57].

3.2. Quantum annealers as optimizers
Quantum annealers represent a different approach to quantum machine learning. As natural optimizers,
they outsource the training part of machine learning to quantum computers, rather than the prediction part.
Since quantum annealers solve very specific optimization problems, more precisely QUBO problems (see
equation (1)), the central challenge is to rephrase the loss function of a (quantum) machine learning
problem in this format.

For example, an interesting and very early proposal [46] recognized that the mean square loss of an
ensemble of perceptrons—the simple building blocks of neural nets—can be written as a QUBO problem. A
prerequisite is that the weights of the model have to be binary values—a condition that may even offer
advantages for machine learning. The approach has been termed QBoost and tested in one of the first
commercial quantum annealers, the D-Wave machine, as early as in 2009 [58]. Other proposals to use the
QUBO structure of quantum annealers for machine learning have been proposed for anomaly detection, in
particular software verification and validation [59].

Another, slightly different idea uses quantum annealers as samplers to support classical training of
classical models [45]. In the training of so-called Restricted Boltzmann Machines (RBMs), samples from a
Gibbs distribution are required to find better candidates for the parameters in every step. The intimate
connections between RBMs and Ising-type models in many-body physics (see also [60] which reveals this
connection through the language of tensor networks) suggest that quantum annealers, which are based on
interacting spins, can produce samples from such Gibbs distribution. The details, especially when it comes to
real hardware, are non-trivial, but successful quantum-assisted training has been demonstrated for small
applications [45]. An important question raised as a result of this strategy was how samples from true
quantum distributions, such as the Ising model with a transverse field, can be used to train quantum RBMs
[61].

4. QA applications

For quantum annealers, the two most common approaches to machine learning involve mapping the
problem into an optimization problem over the full dataset, and using the quantum device as a sampling
engine to solve a difficult gradient calculation problem. In this section, we review papers that provide
examples of these paradigms, we refer the reader to [62–64] for more in-depth reading.

4.1. Di-photon event classification
The classification of collision events into signal or background categories is one of the main tasks in particle
physics, and a frequent application for machine learning. The Higgs boson, until its discovery in 2012
[65, 66], was the missing piece of the standard model. The authors of [62] propose the use of QA to classify
events between a Higgs decaying to a pair of photons and irreducible background events where two
uncorrelated photons are produced. To this end, eight high level features are measured from the di-photon
system. With a view to using the method proposed in [59]—so called quantum adiabatic machine learning
(QAML)—a list of weak classifiers is computed from those eight features. Using the eight features and their
products as input, n= 36 weak classifiers (ci(xτ )) are computed. The weak classifiers assume values in the
range [−1, 1]—the signal being represented by positive values. A strong classifier is then constructed from a
binary linear combination of the weak classifiers (with parameter wi∈{0, 1} for each weak classifier index i).

The parameters wi are then determined by the optimization of a carefully crafted QUBO:

E(w) =
n=36∑
i,j=1

Cijwiwj +
n=36∑
i=1

2(λ−Ci)wi (5)

where Cij =
∑

τ ci(xτ )cj(xτ ) and Ci =
∑

τ ci(xτ )yτ are computed from the values of the weak classifiers in
the training set and their category (ci(xτ ) and yτ respectively). λ is a parameter penalizing solutions for too
many weak classifiers participating. As described in section 2.2, the QUBO is transformed in a problem
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Figure 2. Area under the ROC curve (AUROC) of the strong classifier optimized on quantum annealer (QA) and simulated
annealing (SA), together with the performance of boosted decision tree (BDT) and deep neural network (DNN) classifiers trained
on the input features [62]. Reprinted by permission from Springer Nature Customer Service Centre GmbH: [Nature] [Nature]
[62], (2017).

Figure 3. Area under the ROC curve (AUROC) of original QAML method, the continuous strong classifier optimized on
quantum annealer (QAML-Z) and simulated annealing (SA-Z), together with the performance of a linear regression (LR) and
deep neural network (DNN) classifiers [63]. Reprinted (figure) with permission from [63], Copyright (2019) by the American
Physical Society.

Hamiltonian HP (see equation (2)) with the change of variable σz
i ← 2wi− 1, and further embedded in a

machine Hamiltonian to be solved on the device. The set of parameters w∗
i obtained through this

optimization defines an optimal strong classifier as constructed above.
The final performance of the strong classifier is compared with two classical machine learning methods:

BDT and deep neural network (DNN). The authors note that importance ranking can be obtained among
the weak classifiers, by varying the parameter λ. The optimization is both run on the D-Wave 2X quantum
annealer system and performed with simulated annealing [67, 68] (SA) using variable fractions of the
training dataset. While SA is accurately finding the same ground truth found by QA, it is unable to reproduce
the excited states measured with QA. Therefore the inclusion of the excited states in the construction of the
strong classifier with QA brings a slight, although not conclusive, difference in performance compared to the
one derived with SA. SA and QA are typically on par, and not providing obvious classification advantage over
BDT and DNN (see figure 2), although a slight advantage with a small training dataset is noted.

In [63], the binary linear combination (wi∈{0, 1}) is extended to a continuous linear combination
(denoted µi∈[0, 1] to avoid confusion) by running the optimization in an iterative manner. In order to take
advantage of the continuous weights, additional weak classifiers, up to Nw in total, are derived from the
existing ones. A new classifier is obtained from an existing one by shifting its value by a multiple of a given
predefined shift, keeping the distribution clipped to the [−1, 1] interval.
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The real parameters µi are obtained using the iterative rule

µi(0) = 0 ; µi(t+ 1) = µi(t)+σz
i (t)2

−(t+1) (6)

where σz
i (t) is the result of the optimization of the same Hamiltonian as in the binary case, evaluated under

the change of variable

σz
i ← µi(t)+σz

i (t)2
−t. (7)

We refer the reader to [63] for more details. A bit flip heuristic is introduced between each iteration, with
decreasing probability, as a regularization measure. The authors note that there might be other such heuristic
that could provide a better final accuracy. The size of the problem Hamiltonian compared to the connectivity
of the hardware is such that the authors prune cross-terms with low values and use a procedure provided by
D-Wave to partially solve the optimization. The proposed hybrid algorithm (so called QAML-Z)
outperforms QAML while remaining without an accuracy advantage over classical approaches (see figure 3).
Here again results obtained using SA and QA are on par. The scheme under which a discrete optimization is
used iteratively as an approximation of continuous optimization using quantum annealers opens new
directions for future algorithms.

4.2. Classification in cosmology with quantum RBM
Quantum annealers do not provide identical answers every time they go through an annealing cycle. For
some applications it would be ideal if, for example, they always returned the lowest energy configuration, but
instead they produce a distribution of states. In principle, these states are Boltzmann-distributed with a
characteristic temperature related to the physical device temperature. In practice, the actual distribution of
states deviates from a Boltzmann distribution (on the D-Wave 2000Q, for example, it is ‘colder’ and tends to
skew towards lower than expected energies). However, with some post-processing the sample distribution
may be converted into a Boltzmann distribution. It may be also anecdotally observed that while the sampled
distribution is not Boltzmann-distributed, simply applying the parameter update equations derived under
the assumption of sampling from a Boltzmann distribution (see below, equations (9) through 11) will
generally allow the model to converge anyway [69, 70].

Taken together, these observations mean that quantum annealers may also be used as sampling engines to
fuel certain classes of machine learning algorithms. RBMs map well to modern quantum annealers for this
purpose. They feature a bipartite connectivity graph that scales well in embedding algorithms as compared to
a fully connected graph. The tunable couplings between qubits function as graph connection weights and the
annealing process naturally samples from the graph configurations with clamped or unclamped values for
the visible nodes in the graph as needed by the application.

RBMs are fundamentally generative models that approximate a target distribution over an array of visible
binary variables (⃗v) as the marginal distribution of a bipartite graph that connects to a different set of hidden
binary variables (⃗h). The distribution is described by

p(⃗v, h⃗)∝ exp(−vTWh+ bTv+ cTh) (8)

for some parameter (bias) vectors b⃗, c⃗, and a connections weight matrixW.
RBMs are trained by maximizing the log-likelihood of a data distribution by updating the bias and

weights parameters. With the loss (L) defined as the negative log-likelihood , the derivatives for the model
parameters are

∂L

∂bi
= ⟨vi⟩data−⟨vi⟩model (9)

∂L

∂ci
= ⟨hi⟩data−⟨hi⟩model (10)

∂L

∂Wj
i

= ⟨vihj⟩data−⟨vihj⟩model. (11)

These derivatives form a gradient for use in gradient descent for adjustments to b⃗, c⃗, andW. The expectations
are computed over the data (the training set) with clamped values and over the model with unclamped

7
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Figure 4. The quantum edge network implemented as a tree tensor network, a hierarchical quantum classifier [76]. The
architecture uses Ry rotation gates and CNOT gates. A single output qubit is measured [72]. Reproduced with permission from
[72]. (2020).

values. These steps are also referred to as the positive and negative phases. See [71] for a particularly clear
explanation.

While computing the expectations over the data is easy, computing the expectations over the model is
costly, as that scales like 2min(nv,nh), with nv and nh equal to the number of visible and hidden units,
respectively. There are a number of mitigation strategies to avoid this difficult computation, all discussed in
[64]. Of particular relevance here, the expectations for a given set of model parameters using unclamped
variables on a D-Wave can be computed, where each computed configuration is sample from the machine’s
output distribution. For small graphs this approach is impractical but it may eventually offer some
computational advantage for very large graphs.

In practice, the distribution of states returned by the D-Wave 2000Q is not Boltzmann distributed, and
significant post-processing is required to achieve a Boltzmann distribution. As observed in [64], the D-Wave
offers essentially no sampling advantage over random string initial states if using only Boltzmann
distributions for the optimization. However, it has been observed that RBMs may be optimized with
imperfect gradients [69]. Therefore, it is possible to greatly reduce the amount of required post-processing
and still train effective models.

For the task of galaxy morphology classification, in [64] it was observed that RBMs, regardless of the
training methods, were less effective than gradient boosted trees (likely the best classical algorithm for
structured data like the dimensionality reduced galaxy images). Additionally, the best classical methods for
discriminative training outperformed the quantum, generative training. However, regardless of training
strategy, RBMs offered a performance advantage for very small datasets that gradient boosted trees and
logistic regression tended to badly overfit. Furthermore, early in the small dataset training runs, the quantum
generative training outperformed the classical discriminative training.

5. Quantum circuit applications

As introduced in section 3.1, circuits with varying parameters can be optimized to perform a specific task,
e.g. classification. The parameters of these circuits can be determined with gradient-based optimization
method. The following papers are following this approach for HEP specific classification tasks. We refer the
reader to [72–74] for more in-depth reading.

5.1. QuantumGNNs for particle track reconstruction
Quantum computers promise to greatly speed-up search in large parameter spaces. Charge particle tracking
— tracking in short—is the task of associating sparse detector measurements (a.k.a ‘hits’) to the particle
trajectory they belong to. Tracking is the cornerstone of event reconstruction in particle physics. Because of
their ability to evaluate a very large number of states simultaneously, they may play an important role in the
future of track reconstruction in particle physics experiments. Reconstructing particle trajectories with high
accuracy will be one of the major challenges in the HL-LHC experiments [75].

Increase in the expected number of simultaneous collisions and the high detector occupancy will make
tracking extremely demanding in terms of computing resources. State-of-the-art algorithms rely, today, on a
Kalman filter-based approach: they are robust and provide good physics performance, however they are
expected to scale worse than quadratically with the increasing number of simultaneous collisions [75]. The
high energy physics community is investigating several possibilities to speed up this process [77–79]
including deep learning-based techniques. For instance, introducing an image-based interpretation of the
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Figure 5. QGNN performance. The validation loss (on the left) decreases smoothly. Consistently, the validation accuracy (on the
right) increases with the number of iterations. Results are shown for two epochs corresponding to 2900 steps (1 epoch= 1450
updates) [72]. Reproduced with permission from [72]. (2020).

detector data and using convolutional neural networks can lead to high-accuracy results [80]. At the same
time, a representation based on space-points arranged in connected graphs could have an advantage given
high dimensionality and sparsity of the tracking data. The HEPtrkX project [80] followed this approach and
successfully developed a set of graph neural networks (GNNs) to perform hits and segments classification. In
this approach, graphs of connected hits are built, features of the graph nodes and edges are computed and,
finally, relevant hit connections are predicted. The dataset, designed for the TrackML challenge [81] contains
precise locations of hits, and the corresponding particles. The classical GNN architecture consists of three
networks organised in cascade: an input network encodes the hits information as node features, an edge
network outputs edge features, using the start and end nodes, and a node network, that calculate hidden nodes
features taking into account all connected nodes on the previous and next layers. The edge and node
networks are applied iteratively after the input network (see [82] for more details). The work in [72]
represents an exploratory look at this GNN architecture from a quantum computing perspective: it
re-implements the input, edge and node networks as quantum circuits.

In particular, the edge and node networks are implemented as tree tensor networks (TTN) —
hierarchical quantum classifiers originally designed to represent quantum many body states described as
high-order tensors [76]. The data points are encoded (see figure 4) as parameters of Ry rotation gates:

Ry(θ) |0 ⟩= cos(θ/2) |0 ⟩+ sin(θ/2) |1 ⟩. (12)

The TTN network consists of Ry rotations and CNOT gates (see figure 4) and its output is the measurement
from a single qubit. The TTN has 11 parameters which are the angles of rotations in Y direction on the Bloch
sphere. These parameters are optimized using the ADAM optimiser and a binary cross entropy loss function
using Pennylane [51] and Tensorflow [83]. The model is trained on 1450 subgraphs extracted from the
TrackML dataset.

Although preliminary, the obtained performance (see figure 5) is promising: the validation losses
decrease smoothly and the accuracy increases with the number of iterations. At convergence, the accuracy
value is still lower than for the classical case. This is, however, expected as the number of hidden features, and
iteration are reduced compared to the GNN, because of computation issues.

5.2. Classification using variational quantum circuits
The method used in [73] and [74] is based on variational quantum algorithms for machine learning
(VQML). The VQML approach exploits the mapping of input data to an exponentially large quantum state
space to enhance the ability to find an optimal solution. The data encoding circuit UΦ(⃗x) maps the data x⃗ ∈ Ω
to the quantum state |Φ(⃗x)⟩= UΦ(⃗x)|0⟩. The quantum state with encoded input data is processed by
applying quantum gates to create an ansatz state, which is then measured to produce the output. The
variational quantum circuitW(θ⃗) parameterized by θ⃗ is applied [84]

W(θ⃗) = U(l)
loc(θl) Uent . . .U

(2)
loc (θ2) Uent U

(1)
loc (θ1) (13)

The probability of outcome y is obtained through

py(⃗x)← ⟨Φ(⃗x)|W†(θ⃗)MyW(θ⃗)|Φ(⃗x)⟩ (14)
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Figure 6. ROC curve of VQML and BDTmethods. With 800 events and 5 qubits, the VQML have obtained very close performance
to the one obtained using the classical machine learning method BDT [73]. Reproduced from [73]. CC BY-NC-ND 4.0.

Figure 7. AUC with number of iterations. Within the limited testing iterations,the performance of the IBM Q quantum computer
is compatible with the one from the quantum simulator [73]. Reproduced from [73]. CC BY-NC-ND 4.0.

whereas {My} is the binary measurement. The optimization process consists in learning θ⃗ to minimize the
loss quantified as a difference between the predicted py(⃗x) and the known classification label y. Different
optimizers, such as COBYLA [85] and SPSA [86, 87], can be applied.

In [73], the authors made some promising progress by obtaining preliminary results in the application of
IBM quantum simulators and IBM Q quantum computer to ttH (Higgs coupling to top quark pairs) data
analysis. The authors have measured the AUC (area under the ROC curve) with different numbers of events
in the training dataset. With 5 qubits and 800 events, the VQML have obtained very close performance to the
one obtained using the classical machine learning method BDT (see figure 6). A preliminary test was to
perform VQML on the IBM Q quantum computer with 5 qubits, 100 training events and 100 test events.
Within the limited testing iterations, the performance of the IBM Q quantum computer is compatible with
the one from the quantum simulator, which reaches a performance similar to the BDT method with enough
iterations (see figure 7).

In [74], the authors have attempted to use the VQML algorithm for the classification of a new physics
signal predicted in a theory of supersymmetry. Two implementations of the VQML algorithm are tested, the
first one called quantum circuit learning (QCL) [88], which is used with the Qulacs simulator [89], and the
second called variational quantum classification (VQC) [84], which is used with the QASM simulator and
real quantum computing devices. The QCL (VQC) uses the combination of RY and RZ (Hadamard and RZ)
gates for encoding the input data. For the creation of an ansatz state, the combination of an entangling gate
and single-qubit rotation gates are used for both implementations. The QCL uses the time-evolution gate
e−iHt with the Hamiltonian H of an Ising model with random coefficients as an entangling gate while the
VQC uses the Hadamard and CNOT gates for that. The rotation angles used to create the ansatz are
parameters to be tuned, and the number of parameters is chosen to be 27, 45 and 63 for the QCL and 12, 20
and 28 for the VQC using 3, 5 and 7 variables, respectively.

The experimental test of the quantum algorithm is performed in [74] with the SUSY data set in the UC
Irvine Machine Learning Repositiory [90] using cloud Linux servers for the QCL and a local machine and
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Figure 8. Average AUC values as a function of the training sample size for the BDT, DNN and QCL algorithms with 3, 5 and 7
variables [74]. Reprinted by permission from Springer Nature Customer Service Centre GmbH: [Springer] [high-energy physics]
[74] (2020).

Figure 9. ROC curves in the training and testing phases of the VQC algorithm with 3 variables and the training sets of 40 and
1 000 events, obtained using QSM simulator [74]. Reproduced from [74]. CC BY-NC-ND 4.0.

Table 1. AUC values in a training phase for the VQC algorithm running on quantum computers and QASM simulator.
The training condition is fixed to three variables, 40 training events and the number of iterations of 100 [74]. Reproduced from [74].
CC BY-NC-ND 4.0.

Device/Condition AUC

Quantum Computer (Johannesburg) 0.799± 0.020
Quantum Computer (Boeblingen) 0.807± 0.010
QASM simulator 0.815± 0.015

the IBM Q quantum computer for the VQC. The performance of the quantum algorithm is compared with
BDT and DNN optimized to avoid over-training at each training set. The QCL performance is relatively flat
in the training size (see figure 8) while the performance of the BDT and DNN improves with the size. The
computational resource needed to simulate QCL with 10 000 events or more is beyond the capacity used in
[74]. According to these simulation studies, the three algorithms appear to have a comparable discriminating
power when restricting the training set to be less than ~10 000 events, with an indication that the quantum
algorithm might have an advantage with a small sample ofO(100) events. Figure 8 shows ROC curves
obtained using the 3-variable VQC algorithm on the QASM simulator with different numbers of events in
the training set. The over-training is clearly visible if the training set contains only 40 events while it is largely
gone when the training set is increased to 1 000. The small sample of 40 events is used to train the VQC
model with IBM Q quantum computers as well. The AUC values from the QASM simulator and quantum
computers are given in table 1. The results from the quantum computers appear to be slightly worse than
those from the simulator, though they are consistent within the uncertainties (defined as the standard
deviations of five measurements). The authors of [74] conclude that the variational quantum circuit can
learn the properties of the input data with real quantum device, acquiring classification power for physics
events of interest.
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6. Applications coming soon

An interesting line of research concerns generative models, such as Boltzmann machines, variational
auto-encoders and generative adversarial networks, and their quantum counterparts. Classical generative
models are being investigated by the HEP community as solutions to speed up Monte-Carlo simulation,
because of their ability to model complex probability distributions, and the relative lower computation cost
during the prediction phase. Training those models is, however, a difficult task, and computing intensive.
Coverage is one of the major issues when training or validating generative models performance and it is
related to their representational power and how it maps to the original probability distribution. From this
point of view quantum generative models might show an advantage, while relieving the computational cost
[91].

Quantum SVMs offer an attractive approach not fully exploited in HEP. An SVM [92] is a supervised
machine learning method which outputs an optimal hyperplane to categorize samples between two classes to
classify data points. A quantum-enhanced kernel for SVM [84] can map the input vectors to an exponential
Hilbert space, which could make it easier to construct an optimal hyperplane and increase the classification
performance. Additionally, to calculate the quantum-enhanced kernel, the number of circuits is a function of
the square of the number of input vectors, which may not be a good selection for classifying huge number of
events. Multiple groups are actively exploring quantum kernel methods with gate-based quantum computers
for event classification. Currently, these methods are limited by the dimensionality reduction required to
make data compatible with modern hardware. Studying these algorithms provides new and different insights
into the performance of modern computing platforms though. For example, they compute data element
overlaps in Hilbert space, and the outcome state distributions are sensitive to device noise in different ways
than variational algorithms like VQE or QAOA. New schemes for approaching quantum feature map in
particular [47] are interesting directions.

7. Discussion and outlook

When considering applications of quantum machine learning for a field such as HEP, the immediate
question is whether we have reason to believe that quantum machine learning—for near-term or universal
quantum computers—is particularly suited to this type of application. The truth is that it is simply too early
to tell, and only further investigation of the methods will provide the answers.

One feature of HEP data sets is that they are notoriously large. In principle, this makes quantum
speed-ups attractive, as they could be crucial to analyse big amounts of data. But significant (that is,
exponential) speed-ups in quantummachine learning are still controversial as to their scope [93] and in some
cases, their true quantum nature [94]. They often rely on special properties of the data such as sparsity [95],
or a special oracle or device that can load the data in superposition [41]. The appeal of near-term approaches
to quantum machine learning is without doubt that ideas can be easily tested on a small scale, using the rich
landscape of quantum programming languages, cloud-based quantum computers, and quantum machine
learning software packages. Even so, to encode large data sets into a quantum system to sufficient precision
and to measure the outputs for every events in the dataset is a physical challenge that is significantly out of
the scope of near-term quantum computing. Of course, in the age of Big Data, the large size of the data sets
are not unique to HEP, and it needs to be further established whether the intersection discussed in this review
poses any particular challenge to machine learning which would motivate the use of quantum computers.

7.1. Experimenting with quantum annealers
Despite continuous improvement of quantum annealers they remain noisy, with limited number of qubits,
and limited connectivity.

7.1.1. Solver heuristics
A huge challenge is to map the reformulated problem to an actual device with a limited connectivity [96],
and it is often necessary to include connectivity constraints already into the loss itself. One alternative
available in the D-Wave software stack is qbsolve [97], a heuristic that allows to split large problems in several
smaller ones that in turn can be solve on the available hardware. This allows one to experiment with much
larger QUBO than the one directly solvable with existing hardware, but in return requires additional
computing resources. It also prevents us from directly probing the stand-alone capabilities of the device.

7.1.2. Digital devices
Digital annealers [98] offer the potential to prototype algorithms with large numbers of digital qubits. Using
custom ASICs, digital annealers are capable of simulating fully-connected quantum annealers with 4 096
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qubits (with 64 bit precision) or as many as 8 192 qubits (with 16 bit precision). In principle, a digital
annealer cluster could offer up to 1 000 000 qubits using multi-chip support. While in the very long-run fully
quantum annealers should be able to overtake digital simulators, in the near-term, these machines are
exciting application test-beds and may even be able to deliver competitive results.

7.2. Experimenting with quantum circuits
Applying quantum algorithms on quantum hardware is the core aim at any research on quantum computing.
But the scale of even state-of-the-art studies quickly reveals the limitations of current-day hardware. Typical
implementations use only a few qubits and datasets of four features (for example, [55, 99, 100]). The limited
number of qubits, connectivity and short decoherence time of the current quantum hardware make it
difficult to experiment with large and long variational circuits.

7.2.1. Circuit architecture
In the papers reviewed above, the quantum circuit architecture (the types and numbers of gates) is fixed and
only the parameters of the gates are optimized. In combination of this approach, search for optimal gate
assembly is also possible. In [101], reinforcement learning is used to derive circuits to solve combinatorial
problems. This technique might provide further handle at developing well performing quantum machine
learning models.

7.2.2. Error mitigation
Practically, circuit-based qubit devices allow only a few gates to be performed before a signal is drowned in
noise. The fidelity of measurements on quantum device can be improved via error mitigation
strategies [102]. Various techniques allow experiments with an increased number of gates or better qubit
connectivity. In addition to techniques making explicit assumption on the form and origin of the noise,
machine learning approaches can be used to learn directly from the device-dependent noise. The integration
of such noise-modelling-cancelling technique of circuit compiler would help with experimenting on
quantum device, at the cost of increased resources.

7.2.3. Circuit simulation
Prototyping quantum algorithms with a classical simulator is an important step in the development and
testing of new algorithms. The classical simulator used for the VQML study in [74] has enabled the authors
to test the QCL algorithm with up to seven variables or ~10 000 events for the training set size. The
simulation time and memory usage increases exponentially with the number of input variables in the
creation of variational quantum states withW(θ⃗). Despite continuous improvement in the simulator [89],
the experimentation with circuits with large number of qubits is still hampered by this computation
requirement. Of course, it is expected that the simulation of a quantum device will be classically hard.
Because of this, it may be better when possible to experiment on smaller numbers of qubits—where circuits
can be run—and study the time to solution or complexity, as a function of the number of qubits.

7.2.4. Optimization in quantum machine learning
There are two types of optimizer: gradient-based and derivative-free. For some derivative-free optimizers, it
may require many iterations to achieve good training performance as the number of variational parameters
increases. For the gradient-based optimizer, fewer iterations may be required. However, to calculate the
gradient is also difficult [103] and numerical differentiation requires the circuit to be run additional times as
the number of variational parameters increases. Changing a single circuit parameter for the evaluation of
gradients through a cloud-based service can take of the order of many seconds, which quickly makes
optimization of even a small system a matter of hours and days.

7.3. Quantum data
All the algorithms described in this review so far made use of a classical machine learning dataset, embedded
into a quantum device. However, quantum machine learning algorithms have the unique property to be
usable with a dataset made of quantum states, or quantum data [104, 105]. Those input quantum states are
usually the output of some quantum circuits (e.g. circuits that extract the ground state of different
Hamiltonians [106]) and are then processed by a variational circuit that has learned a desired quantum
function (e.g. a property of this ground-state). However, one could also imagine directly feeding the
quantum objects resulting from a HEP, dark matter, or gravitational wave detection experiment into the
QML algorithm. Several application of machine learning on quantum data have been developed, including
clustering of quantum states [104], detecting anomalies on a quantum device [107], learning algorithms to
estimate the fidelity or the purity of a state [108, 109], learning phases of matter [106] and classifying
quantum states [110, 111].

13



Mach. Learn.: Sci. Technol. 2 (2021) 011003 W Guan et al

The question of how to exploit the quantum nature of the systems generating HEP data has not been
prominent in the literature, but there are two interesting outlooks.

The first is to do quantum machine learning directly on the quantum objects measured in HEP. As an
example, instead of processing the classical signal formed in photonic sensors, one could direct the photons
into a photonic quantum computer and apply a variational circuit before conducting the final measurement.
The circuit could be trained to extract important information from the quantum state, or to classify the state.
Applying this process to axion dark matter experiments [112] or to neutrino detectors [18] could be
promising research directions.

The second path follows the idea of quantum simulations [113, 114], an important use of quantum
computers in simulating complex quantum systems to determine their properties. If a HEP experiment could
be simulated on a quantum computer [18, 19, 21], the simulation could be followed by a quantum machine
learning routine executed on the very same device, and analysing the quantum states produced by the
simulation. Instead of costly state tomography to characterise the results, the wave function is directly
accessed and important information extracted.

In both cases, an important insight from quantum machine learning—possibly the one with the highest
future impact on other quantum disciplines—is the ability to differentiate through quantum computations.
This includes a wealth of knowledge and practical methods to get partial derivatives of a measurement result
with respect to (classical) physical parameters of the experiment, such as a magnetic field strength or pulse
length. Quantum differentiation opens a door to design experiments by adaptively optimizing some cost
functions, which is crucial for quantum data analysis.

7.4. Concluding remarks
Overall, we are just at the beginning of exploring the intersection between quantum machine learning and
HEP. The papers presented in this review therefore have to be understood as exploratory studies that propose
angles to approach the problem of how to use quantum machine learning algorithms to understand
fundamental particles.

We presented papers on performing classification using quantum machine learning with QA, restrictive
Boltzmann machines, quantum graph networks and variational quantum circuits. The capacity of quantum
annealers to perform classification is limited due to the restrictive formulation of the problem.
Quantum-circuit-based machine learning is yet of limited performance due to the necessary down-scaling of
the problems, so as to fit on the quantum device, or to be amenable in simulation.

In the outlook we discussed practical considerations of experimenting with quantum machine learning
and the prospect of analysing quantum data. These challenges put quantum machine learning into a
particularly difficult spot. The quality of a machine learning algorithm is usually estimated through
empirical benchmarks on pseudo-realistic datasets. Evidence from deep learning suggests that machine
learning on large datasets behaves very differently from the small-data regime. And while consistently
improving, the theory of machine learning is currently unable to explain the performance of algorithms such
as neural networks. The challenges for practical experiments as well as fundamental limits of classical
simulations restrict quantum machine learning benchmarks to small proof-of-principle investigations that
may only say very little about their performance in realistic settings.

As the technology develops, more theory work is needed to understand the power of near-term quantum
machine learning. While the current performance of quantum machine learning on high energy physics data
is limited, there is hope that future advances on both quantum devices and quantum algorithms will help
with the computation challenges of particle physics.
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